Physical Modeling for Selective Laser Sintering Process

Author(s):  
Arash Gobal ◽  
Bahram Ravani

The process of selective laser sintering (SLS) involves selective heating and fusion of powdered material using a moving laser beam. Because of its complicated manufacturing process, physical modeling of the transformation from powder to final product in the SLS process is currently a challenge. Existing simulations of transient temperatures during this process are performed either using finite-element (FE) or discrete-element (DE) methods which are either inaccurate in representing the heat-affected zone (HAZ) or computationally expensive to be practical in large-scale industrial applications. In this work, a new computational model for physical modeling of the transient temperature of the powder bed during the SLS process is developed that combines the FE and the DE methods and accounts for the dynamic changes of particle contact areas in the HAZ. The results show significant improvements in computational efficiency over traditional DE simulations while maintaining the same level of accuracy.

2017 ◽  
Vol 139 (10) ◽  
Author(s):  
Jared Allison ◽  
Conner Sharpe ◽  
Carolyn Conner Seepersad

Additive manufacturing (AM) has many potential industrial applications because highly complex parts can be fabricated with little or no tooling cost. One barrier to widespread use of AM, however, is that many designers lack detailed information about the capabilities and limitations of each process. To compile statistical design guidelines, comprehensive, statistically meaningful metrology studies need to be performed on AM technologies. In this paper, a test part is designed to evaluate the accuracy and resolution of the polymer powder bed fusion (PBF) or selective laser sintering process for a wide variety of features. The unique construction of this test part allows it to maximize feature density while maintaining a small build volume. As a result, it can easily fit into most existing selective laser sintering builds, without requiring dedicated builds, thereby facilitating the repetitive fabrication necessary for building statistical databases of design allowables. By inserting the part into existing builds, it is also possible to monitor geometric accuracy and resolution on a build- and machine-specific basis in much the same way that tensile bars are inserted to monitor structural properties. This paper describes the test part and its features along with a brief description of the measurements performed on it and a representative sample of the types of geometric data derived from it.


2021 ◽  
Vol 297 ◽  
pp. 01050
Author(s):  
Hanane Yaagoubi ◽  
Hamid Abouchadi ◽  
Mourad Taha Janan

Laser sintering sintering is one of the most widely used 3D printing technologies, in which it transforms 3D models into authentic parts with generally excellent workmanship, the test today is to ensure the unmatched nature of the item produced, therefore hypothetically to understand and predict the thermal history in this process, the thermal models must be exact and fair, In this article, the consideration will be focused on the different models of heat flux diffusion, in the bibliography, some formulas Numbers that describe the transport of the heat source out of the powder bed have been found. A comparison between its laser source models will be established. The re-modeling takes place in MATLAB using the parameters of polyamide12.


2018 ◽  
Vol 8 (12) ◽  
pp. 2383 ◽  
Author(s):  
Zhehan Chen ◽  
Xianhui Zong ◽  
Jing Shi ◽  
Xiaohua Zhang

Selective laser sintering (SLS) is an additive manufacturing technology that can work with a variety of metal materials, and has been widely employed in many applications. The establishment of a data correlation model through the analysis of temperature field images is a recognized research method to realize the monitoring and quality control of the SLS process. In this paper, the key features of the temperature field in the process are extracted from three levels, and the mathematical model and data structure of the key features are constructed. Feature extraction, dimensional reduction, and parameter optimization are realized based on principal component analysis (PCA) and support vector machine (SVM), and the prediction model is built and optimized. Finally, the feasibility of the proposed algorithms and model is verified by experiments.


Sign in / Sign up

Export Citation Format

Share Document