Development of SNTA Code System for SCWR Core Steady-State Analysis

Author(s):  
Lianjie Wang ◽  
Wenbo Zhao ◽  
Ping Yang ◽  
Yongqiang Ma ◽  
Di Lu

A coupled neutronics/thermal-hydraulics (N/T) three-dimensional code system SNTA is developed for supercritical water-cooled reactor (SCWR) core steady-state analysis by modular coupling the improved neutronics nodal methodological code and SCWR thermal-hydraulic subchannel code. The appropriate outer iteration coupling method and self-adaptive relaxation factor are proposed for enhancing convergence, stability, and efficiency of coupled N/T calculation. The steady-state analysis for the CSR1000 core is applied to verify SNTA. The results calculated by SNTA agreed well with those by CASIR and SRAC. SNTA is more efficient than CASIR and SRAC, where the neutronics modules are based on the finite-difference method. The numeric results show that SNTA can be applied to SCWR core steady-state analysis and core concept design.

Author(s):  
Lianjie Wang ◽  
Ping Yang ◽  
Di Lu ◽  
Wenbo Zhao

An optimization design of China supercritical water-cooled reactor (SCWR) with the rated electric power of 1000 MWe (CSR1000) conceptual core is proposed. Steady-state performance of the proposed core is then studied with the SCWR core steady-state analysis code system SNTA. These key parameters such as burnup performance, reactivity control capability, power distribution, maximum fuel cladding temperature, and maximum linear power density are analyzed. The relative coolant flow rate of the second flow path, which is suited with assembly power, is also presented. The study shows that the refueling cycle of CSR1000 core can be extended effectively under the optimization design.


2020 ◽  
Vol 6 (3) ◽  
Author(s):  
Lianjie Wang ◽  
Lei Yao ◽  
Ping Yang ◽  
Di Lu ◽  
Wenbo Zhao

Abstract The three-dimensional code system supercritical water-cooled reactor (SCWR) coupled neutronics/thermal-hydraulics analysis (SNTA) code is developed for SCWR core steady-state analysis by coupling neutronics/thermal-hydraulics (N/T). This paper studies the calculation difference between the SNTA code and the standard reactor analysis code (SRAC). By using the impacts exclusive method, it is confirmed that the calculation difference between these two codes is caused by different feedback of the cross section. The cross section data and the energy group structure of the SRAC code differ from the SNTA code, and the density coefficient of reactivity calculated by the SRAC code is higher, which means the feedback of the density and power distribution is bigger and the axial power distribution varies rapidly. The SNTA code with finer energy group structure is suitable for the performance analysis of SCWR core which has strong N/T coupling characteristics.


Evergreen ◽  
2017 ◽  
Vol 4 (1) ◽  
pp. 44-51 ◽  
Author(s):  
Takayuki Oka ◽  
Taro Handa ◽  
Fujio Akagi ◽  
Sumio Yamaguchi ◽  
Toshiyuki Aoki ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document