Heat Transfer Modeling of the Capillary Fiber Drawing Process

2017 ◽  
Vol 139 (7) ◽  
Author(s):  
Shicheng Xue ◽  
Geoffrey Barton ◽  
Simon Fleming ◽  
Alexander Argyros

Considerable recent research has focused on the ability of microstructured fibers to exhibit diverse optical functionalities. However, accurately preserving the structure imposed at the preform stage after drawing it down to fiber, while avoiding Rayleigh–Plateau style instabilities, has proven to be a major fabrication challenge. This modeling/analytical study was carried out in support of an experimental program into possible fabrication options for various microstructured optical fibers and considers the generic case of the nonisothermal drawing of a capillary preform to fiber. Model development was carried out in two stages. Initially, a fully conjugate multiphase model, which includes all heat transfer modes within an operational fiber drawing furnace, was validated against available experimental data. To evaluate the external radiative heat flux using the net-radiation method, a Monte Carlo ray-tracing (MC-RT) method was coupled to the commercial polyflow package to obtain all view factors between the various furnace walls and the deforming preform/fiber. A simplified model was also developed (to shorten simulation run times) by explicitly calculating the convective heat transfer between the air within the furnace and the preform/fiber surface using a heat transfer coefficient determined by matching predicted results with those obtained from the multiphase model.

Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2636
Author(s):  
Petr Valášek ◽  
Miroslav Müller ◽  
Vladimír Šleger ◽  
Viktor Kolář ◽  
Monika Hromasová ◽  
...  

Composite materials with natural fillers have been increasingly used as an alternative to synthetically produced materials. This trend is visible from a representation of polymeric composites with natural cellulose fibers in the automotive industry of the European Union. This trend is entirely logical, owing to a preference for renewable resources. The experimental program itself follows pronounced hypotheses and focuses on a description of the mechanical properties of untreated and alkali-treated natural vegetable fibers, coconut and abaca fibers. These fibers have great potential for use in composite materials. The results and discussion sections contribute to an introduction of an individual methodology for mechanical property assessment of cellulose fibers, and allows for a clear definition of an optimal process of alkalization dependent on the content of hemicellulose and lignin in vegetable fibers. The aim of this research was to investigate the influence of alkali treatment on the surface microstructure and tensile properties of coir and abaca fibers. These fibers were immersed into a 5% solution of NaOH at laboratory temperature for a time interval of 30 min, 1 h, 2 h, 3 h, 6 h, 12 h, 24 h, and 48 h, rinsed and dried. The fiber surface microstructures before and after the alkali treatment were evaluated by SEM (scanning electron microscopy). SEM analysis showed that the alkali treatment in the NaOH solution led to a gradual connective material removal from the fiber surface. The effect of the alkali is evident from the visible changes on the surface of the fibers.


2020 ◽  
pp. 1-28
Author(s):  
Gaoqiang Yang ◽  
Hector Iacovides ◽  
Timothy Craft ◽  
David Apsley

2021 ◽  
Vol 373 ◽  
pp. 111030
Author(s):  
Yaou Shen ◽  
Shinian Peng ◽  
Mingyu Yan ◽  
Yu Zhang ◽  
Jian Deng ◽  
...  

2004 ◽  
Vol 126 (5) ◽  
pp. 852-857 ◽  
Author(s):  
Xu Cheng ◽  
Yogesh Jaluria

The domain of operating conditions, in which the optical fiber-drawing process is successful, is an important consideration. Such a domain is mainly determined by the stresses acting on the fiber and by the stability of the process. This paper considers an electrical resistance furnace for fiber drawing and examines conditions for process feasibility. In actual practice, it is known that only certain ranges of furnace temperature and draw speed lead to successful fiber drawing. The results obtained here show that the length of the heated zone and the furnace temperature distribution are other important parameters that can be varied to obtain a feasible process. Physical behavior close to the boundary of the feasible domain is also studied. It is found that the iterative scheme for neck-down profile determination diverges rapidly when the draw temperature is lower than that at the acceptable domain boundary due to the lack of material flow. However, the divergence rate becomes much smaller as the temperature is brought close to the domain boundary. Additional information on the profile determination as one approaches the acceptable region is obtained. It is found that it is computationally expensive and time-consuming to locate the exact boundary of the feasible drawing domain. From the results obtained, along with practical considerations of material rupture, defect concentration, and flow instability, an optimum design of a fiber-drawing system can be obtained for the best fiber quality.


1980 ◽  
Vol 23 (8) ◽  
pp. 1045-1053 ◽  
Author(s):  
M.A. Styrikovich ◽  
A.I. Leontiev ◽  
V.S. Polonsky ◽  
I.I. Malashkin

2021 ◽  
Vol 408 ◽  
pp. 119-128
Author(s):  
Md Yeashir Arafat ◽  
Shashwata Chakraborty

The thermophysical properties as well as the thermal performance of a nanofluid can be altered upon varying the nanoparticle type and/or nanoparticle volume concentration. Herein, the effects of variable nanoparticle concentration on water-based TiO2, SiO2, TiC, and SiC nanofluids have been studied analytically. The dispersion effects of 1-4% nanoparticle on the single-phase forced convection heat transfer performance of the nanofluids have been investigated. The effective thermophysical properties of the nanofluids are determined adopting the general correlations. The flow velocities of the nanofluids relative to their base fluids are assumed to be constant. Mouromtseff number has been employed as a convenient figure of merit to compare the nanofluids under fully developed internal laminar and turbulent flow conditions. The results indicate an increase in effective density, thermal conductivity, and dynamic viscosity of the nanofluids. Nanofluids containing carbide suspensions exhibit superior heat transfer properties compared to those having oxide suspensions.


Sign in / Sign up

Export Citation Format

Share Document