Cyclic Sheet Metal Test Comparison and Parameter Calibration for Springback Prediction of Dual-Phase Steel Sheets

Author(s):  
Bin Gu ◽  
Ji He ◽  
Shuhui Li ◽  
Yuan Chen ◽  
Yongfeng Li

Springback is an important issue for the application of advanced high-strength steels (AHSS) in the automobile industry. Various studies have shown that it is an effective way to predict springback by using path-dependent material models. The accuracy of these material models greatly depends on the experimental test methods as well as material parameters calibrated from these tests. The present cyclic sheet metal test methods, like uniaxial tension–compression test (TCT) and cyclic shear test (CST), are nonstandard and various. The material parameters calibrated from these tests vary greatly from one to another, which makes the usage of material parameters for the accurate prediction of springback more sophisticated even when the advanced material model is available in commercial software. The focus of this work is to compare the springback prediction accuracy by using the material parameters calibrated from tension–compression test or cyclic shear test, and to further clarify the usage of those material parameters in application. These two types of nonstandard cyclic tests are successfully carried out on a same test platform with different specimen geometries. One-element models with corresponding tension–compression or cyclic shear boundary conditions are built, respectively, to calibrate the parameters of the modified Yoshida–Uemori (YU) model for these two different tests. U-bending process is performed for springback prediction comparison. The results show, for dual phase steel (DP780), the work hardening stagnation is not evident by tension–compression tests at all the prestrain levels or by cyclic shear test at small prestrain γ = 0.20 but is significantly apparent by cyclic shear tests at large prestrain γ = 0.38, 0.52, 0.68, which seems to be a prestrain-dependent phenomenon. The material parameters calibrated from different types of cyclic sheet metal tests can vary greatly, but it gives slight differences of springback prediction for U-bending by utilizing either tension–compression test or cyclic shear test.

2009 ◽  
Vol 410-411 ◽  
pp. 467-472 ◽  
Author(s):  
Marion Merklein ◽  
M. Biasutti

The finite element method is a widely used tool in sheet metal forming. The quality of the results of such an analysis depends largely on the applied constitutive model and its material parameters, which have to be determined experimentally. These data are relevant on the choice of the yield criterion among the wide range of options available in the commercial applications implementing the finite element method. Since the accuracy of material parameters estimation is therefore crucial, investigations were performed with an Al-Mg sheet alloy and a mild steel sheet to optimize a Miyauchi-based simple shear test. This method is one of the basic ways to investigate the plastic properties of a sheet metal up to large strains, which is very important for numerical analysis of sheet metal forming processes. Aim of the test is to determine the shear stress-strain correlation. In order to enhance the quality of the experimental results the detection of the deformation’s field, trough an optical measurement system, and the methodology for its evaluation are focus of the present study.


2011 ◽  
Vol 314-316 ◽  
pp. 815-818 ◽  
Author(s):  
Kang Kang Hu ◽  
Xiong Qi Peng ◽  
Jun Chen ◽  
Hong Sheng Lu ◽  
Jian Zhang

The forming process simulation and springback prediction of an automobile body panel is implemented by using JSTAMP/LS-DYNA. Yoshida-Uemori model is selected to characterize the anisotropic material behavior of sheet metal during forming. Simulation predictions on spingback are compared with experiment measurements along with numerical results from other material models to demonstrate the effectiveness and accuracy of the Yoshida-Uemori model.


2016 ◽  
Vol 28 (12) ◽  
pp. 04016171 ◽  
Author(s):  
Cristina Tozzo ◽  
Antonio D’Andrea ◽  
Imad L. Al-Qadi

Sign in / Sign up

Export Citation Format

Share Document