scholarly journals Three-Dimensional Aerodynamic Analysis of a Darrieus Wind Turbine Blade Using Computational Fluid Dynamics and Lifting Line Theory

Author(s):  
Francesco Balduzzi ◽  
David Marten ◽  
Alessandro Bianchini ◽  
Jernej Drofelnik ◽  
Lorenzo Ferrari ◽  
...  

Due to the rapid progress in high-performance computing and the availability of increasingly large computational resources, Navier–Stokes (NS) computational fluid dynamics (CFD) now offers a cost-effective, versatile, and accurate means to improve the understanding of the unsteady aerodynamics of Darrieus wind turbines and deliver more efficient designs. In particular, the possibility of determining a fully resolved flow field past the blades by means of CFD offers the opportunity to both further understand the physics underlying the turbine fluid dynamics and to use this knowledge to validate lower-order models, which can have a wider diffusion in the wind energy sector, particularly for industrial use, in the light of their lower computational burden. In this context, highly spatially and temporally refined time-dependent three-dimensional (3D) NS simulations were carried out using more than 16,000 processor cores per simulation on an IBM BG/Q cluster in order to investigate thoroughly the 3D unsteady aerodynamics of a single blade in Darrieus-like motion. Particular attention was paid to tip losses, dynamic stall, and blade/wake interaction. CFD results are compared with those obtained with an open-source code based on the lifting line free vortex wake model (LLFVW). At present, this approach is the most refined method among the “lower-fidelity” models, and as the wake is explicitly resolved in contrast to blade element momentum (BEM)-based methods, LLFVW analyses provide 3D flow solutions. Extended comparisons between the two approaches are presented and a critical analysis is carried out to identify the benefits and drawbacks of the two approaches.

Author(s):  
Francesco Balduzzi ◽  
Alessandro Bianchini ◽  
Giovanni Ferrara ◽  
David Marten ◽  
George Pechlivanoglou ◽  
...  

Due to the rapid progress in high-performance computing and the availability of increasingly large computational resources, Navier-Stokes computational fluid dynamics (CFD) now offers a cost-effective, versatile and accurate means to improve the understanding of the unsteady aerodynamics of Darrieus wind turbines and deliver more efficient designs. In particular, the possibility of determining a fully resolved flow field past the blades by means of CFD offers the opportunity to both further understand the physics underlying the turbine fluid dynamics and to use this knowledge to validate lower-order models, which can have a wider diffusion in the wind energy sector, particularly for industrial use, in the light of their lower computational burden. In this context, highly spatially and temporally refined time-dependent three-dimensional Navier-Stokes simulations were carried out using more than 16,000 processor cores per simulation on an IBM BG/Q cluster in order to investigate thoroughly the three-dimensional unsteady aerodynamics of a single blade in Darrieus-like motion. Particular attention was payed to tip losses, dynamic stall, and blade/wake interaction. CFD results are compared with those obtained with an open-source code based on the Lifting Line Free Vortex Wake Model (LLFVW). At present, this approach is the most refined method among the “lower-fidelity” models and, as the wake is explicitly resolved in contrast to BEM-based methods, LLFVW analyses provide three-dimensional flow solutions. Extended comparisons between the two approaches are presented and a critical analysis is carried out to identify the benefits and drawbacks of the two approaches.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Hassam Nasarullah Chaudhry ◽  
John Kaiser Calautit ◽  
Ben Richard Hughes

The effect of wind distribution on the architectural domain of the Bahrain Trade Centre was numerically analysed using computational fluid dynamics (CFD). Using the numerical data, the power generation potential of the building-integrated wind turbines was determined in response to the prevailing wind direction. The three-dimensional Reynolds-averaged Navier-Stokes (RANS) equations along with the momentum and continuity equations were solved for obtaining the velocity and pressure field. Simulating a reference wind speed of 6 m/s, the findings from the study quantified an estimate power generation of 6.4 kW indicating a capacity factor of 2.9% for the benchmark model. At the windward side of the building, it was observed that the layers of turbulence intensified in inverse proportion to the height of the building with an average value of 0.45 J/kg. The air velocity was found to gradually increase in direct proportion to the elevation with the turbine located at higher altitude receiving maximum exposure to incoming wind. This work highlighted the potential of using advanced computational fluid dynamics in order to factor wind into the design of any architectural environment.


2010 ◽  
Vol 4 (4) ◽  
pp. 657-661 ◽  
Author(s):  
Mohammed Zubair ◽  
Vizy Nazira Riazuddin ◽  
Mohammed Zulkifly Abdullah ◽  
Rushdan Ismail ◽  
Ibrahim Lutfi Shuaib ◽  
...  

Abstract Background: It is of clinical importance to examine the nasal cavity pre-operatively on surgical treatments. However, there is no simple and easy way to measure airflow in the nasal cavity. Objectives: Visualize the flow features inside the nasal cavity using computational fluid dynamics (CFD) method, and study the effect of different breathing rates on nasal function. Method: A three-dimensional nasal cavity model was reconstructed based on computed tomographic images of a healthy Malaysian adult nose. Navier-Stokes and continuity equations for steady airflow were solved numerically to examine the inspiratory nasal flow. Results: The flow resistance obtained varied from 0.026 to 0.124 Pa.s/mL at flow-rate from 7.5 L/min to 40 L/min. Flow rates by breathing had significant influence on airflow velocity and wall shear-stress in the vestibule and nasal valve region. Conclusion: Airflow simulations based on CFD is most useful for better understanding of flow phenomenon inside the nasal cavity.


2014 ◽  
Vol 71 (2) ◽  
Author(s):  
Pang Jung Hoe ◽  
Nik Ahmad Ridhwan Nik Mohd

The need for high performance and green aircraft has brought the blended wing (BWB) aircraft concept to the centre of interest for many researchers. BWB is a type of aircraft characterized by a complex blending geometry between fuselage and wing. Recently, many researches had been performed to unlock its aerodynamic complexity that is still not well understood. In this paper, aerodynamic characteristic of a baseline BWB configuration derived from simple conventional aircraft configuration was analysed using the Reynolds-averaged Navier-Stokes computational fluid dynamics (CFD) solver. The main objectives of this work are to predict the aerodynamic characteristics of the BWB concept at steady flight conditions and at various pitch angles. The results obtained are then compared against a simple conventional aircraft configuration (CAC). The results show that the BWB configuration used has 24% higher L/D ratio than the CAC. The increment to the L/D however is mainly due to lower drag than the improvement in the lift. 


2013 ◽  
Vol 753-755 ◽  
pp. 2731-2735
Author(s):  
Wei Cao ◽  
Zheng Hua Wang ◽  
Chuan Fu Xu

The graphics processing unit (GPU) has evolved from configurable graphics processor to a powerful engine for high performance computer. In this paper, we describe the graphics pipeline of GPU, and introduce the history and evolution of GPU architecture. We also provide a summary of software environments used on GPU, from graphics APIs to non-graphics APIs. At last, we present the GPU computing in computational fluid dynamics applications, including the GPGPU computing for Navier-Stokes equations methods and the GPGPU computing for Lattice Boltzmann method.


Author(s):  
J. Johansen ◽  
N. N. So̸rensen ◽  
J. A. Michelsen ◽  
S. Schreck

The Detached-Eddy Simulation model implemented in the computational fluid dynamics code, EllipSys3D, is applied on the flow around the NREL Phase-VI wind turbine blade. Results are presented for flow around a parked blade at fixed angle of attack and a blade pitching along the blade axis. Computed blade characteristics are compared with experimental data from the NREL/NASA Ames Phase-VI unsteady experiment. The Detached-Eddy Simulation model is a method for predicting turbulence in computational fluid dynamics computations, which combines a Reynolds Averaged Navier-Stokes method in the boundary layer with a Large Eddy Simulation in the free shear flow. The present study focuses on static and dynamic stall regions highly relevant for stall regulated wind turbines. Computations do predict force coefficients and pressure distributions fairly good and results using Detached-Eddy Simulation show considerably more three-dimensional flow structures compared to conventional two-equation Reynolds Averaged Navier-Stokes turbulence models, but no particular improvements are seen on the global blade characteristics.


1997 ◽  
Vol 119 (1) ◽  
pp. 103-109 ◽  
Author(s):  
B. Newling ◽  
S. J. Gibbs ◽  
J. A. Derbyshire ◽  
D. Xing ◽  
L. D. Hall ◽  
...  

The flow of Newtonian liquids through a pipe system comprising of a series of abrupt expansions and contractions has been studied using several magnetic resonance imaging (MRI) techniques, and also by computational fluid dynamics. Agreement between those results validates the assumptions inherent to the computational calculation and gives confidence to extend the work to more complex geometries and more complex fluids, wherein the advantages of MRI (utility in opaque fluids and noninvasiveness) are unique. The fluid in the expansion-contraction system exhibits a broad distribution of velocities and, therefore, presents peculiar challenges to the measurement technique. The MRI protocols employed were a two-dimensional tagging technique, for rapid flow field visualisation, and three-dimensional echo-planar and gradient-echo techniques, for flow field quantification (velocimetry). The Computational work was performed using the FIDAP package to solve the Navier-Stokes equations. The particular choice of parameters for both MRI and computational fluid dynamics, which affect the results and their agreement, have been addressed.


2005 ◽  
Vol 128 (4) ◽  
pp. 632-638 ◽  
Author(s):  
John D. Northall

This paper describes the inclusion of variable gas properties within a Reynolds average Navier-Stokes solver for turbomachinery and its application to multistage turbines. Most current turbomachinery computational fluid dynamics (CFD) models the gas as perfect with constant specific heats. However, the specific heat at constant pressure CP can vary significantly. This is most marked in the turbine where large variations of temperature are combined with variations in the fuel air ratio. In the current model CP is computed as a function of the local temperature and fuel air ratio using polynomial curve fits to represent the real gas behavior. The importance of variable gas properties is assessed by analyzing a multistage turbine typical of the core stages of a modern aeroengine. This calculation includes large temperature variations due to radial profiles at inlet, the addition of cooling air, and work extraction through the machine. The calculation also includes local variations in fuel air ratio resulting from the inlet profile and the dilution of the mixture by the addition of coolant air. A range of gas models is evaluated. The addition of variable gas properties is shown to have no significant effect on the convergence of the algorithm, and the extra computational costs are modest. The models are compared with emphasis on the parameters of importance in turbine design, such as capacity, work, and efficiency. Overall the effect on turbine performance prediction of including variable gas properties in three-dimensional CFD is found to be small.


2020 ◽  
Vol 13 (3) ◽  
pp. 628-643
Author(s):  
C. V. S. SARMENTO ◽  
A. O. C. FONTE ◽  
L. J. PEDROSO ◽  
P. M. V. RIBEIRO

Abstract The practical evaluation of aerodynamic coefficients in unconventional concrete structures requires specific studies, which are small-scale models evaluated in wind tunnels. Sophisticated facilities and special sensors are needed, and the tendency is for modern and slender constructions to arise with specific demands on their interaction with the wind. On the other hand, the advances obtained in modern multi-core processors emerge as an alternative for the construction of sophisticated computational models, where the Navier-Stokes differential equations are solved for fluid flow using numerical methods. Computations of this kind require specialized theoretical knowledge, efficient computer programs, and high-performance computers for large-scale calculations. This paper presents recent results involving two real-world applications in concrete structures, where the aerodynamic parameters were estimated with the aid of computational fluid dynamics. Conventional quad-core computers were applied in simulations with the Finite Volume Method and a progressive methodology is presented, highlighting the main aspects of the simulation and allowing its generalization to other types of problems. The results confirm that the proposed methodology is promising in terms of computational cost, drag coefficient estimation and versatility of simulation parameters. These results also indicate that mid-performance computers can be applied for preliminary studies of aerodynamic parameters in design offices.


Sign in / Sign up

Export Citation Format

Share Document