Development and Testing of a Multitransducer System for Measuring Height of Condensed Water in Steam Pipes With Steady-State and Turbulent Flow Conditions

Author(s):  
Shyh-Shiuh Lih ◽  
Hyeong Jae Lee ◽  
Yoseph Bar-Cohen ◽  
Mircea Badescu

A system consisting of a multiplexer and multiple ultrasonic probes was developed for in situ monitoring of the water condensation height in steam pipes under steady-state and turbulent flow conditions. The measurement method, the signal processing techniques, the experimental setup, and the test results are presented in this paper. The feasibility and efficiency of the developed multitransducers and signal processing algorithms were demonstrated. The measured water height and wave pattern in dynamic surface conditions inside the pipe were verified through the snapshot of the recorded video images. The developed methodology built the framework for the use of multiple transducers array ultrasonic system for practical application to in situ monitor the water height in steam pipes.

2015 ◽  
Vol 1766 ◽  
pp. 73-80
Author(s):  
A. Carmona ◽  
R. Orozco-Cruz ◽  
E. Mejía-Sánchez ◽  
A. Contreras ◽  
R. Galván-Martínez

ABSTRACTAn electrochemical impedance spectroscopy (EIS) corrosion study of API X70 steel was carried out in synthetic seawater with different rotation speeds using a rotating cylinder electrode (RCE) to control the hydrodynamic conditions at room temperature, atmospheric pressure and 24 h of exposure time. A superficial analysis through a scanning electron microscope (SEM) was used to analyze the corrosion type. The rotation speed used was 0 rpm (static condition), 1000, 3000 and 5000 rpm (turbulent flow). The results show that the turbulent flow conditions affect directly the corrosion rate (CR) of the steel, because all values of the CR under turbulent flow conditions are higher than the CR values at static conditions. In addition, it is important to point out that at turbulent flow conditions, the CR increased as the rotation speed also increased. The morphology of the corrosion in all experiments was localized corrosion.


2021 ◽  
pp. 1-10
Author(s):  
Abdallah Samad ◽  
Gitsuzo B. S. Tagawa ◽  
Rasoul Rajabi Khamesi ◽  
François Morency ◽  
Christophe Volat

Sensors ◽  
2019 ◽  
Vol 19 (17) ◽  
pp. 3803
Author(s):  
Xiong Wang ◽  
Nantian Wang ◽  
Xiaobin Xu ◽  
Tao Zhu ◽  
Yang Gao

MEMS-based skin friction sensors are used to measure and validate skin friction and its distribution, and their advantages of small volume, high reliability, and low cost make them very important for vehicle design. Aiming at addressing the accuracy problem of skin friction measurements induced by existing errors of sensor fabrication and assembly, a novel fabrication technology based on visual alignment is presented. Sensor optimization, precise fabrication of key parts, micro-assembly based on visual alignment, prototype fabrication, static calibration and validation in a hypersonic wind tunnel are implemented. The fabrication and assembly precision of the sensor prototypes achieve the desired effect. The results indicate that the sensor prototypes have the characteristics of fast response, good stability and zero-return; the measurement ranges are 0–100 Pa, the resolution is 0.1 Pa, the repeatability accuracy and linearity are better than 1%, the repeatability accuracy in laminar flow conditions is better than 2% and it is almost 3% in turbulent flow conditions. The deviations between the measured skin friction coefficients and numerical solutions are almost 10% under turbulent flow conditions; whereas the deviations between the measured skin friction coefficients and the analytical values are large (even more than 100%) under laminar flow conditions. The error resources of direct skin friction measurement and their influence rules are systematically analyzed.


Sign in / Sign up

Export Citation Format

Share Document