How We Solve the Weights in Our Surrogate Models Matters

2019 ◽  
Vol 141 (7) ◽  
Author(s):  
Daniel Correia ◽  
Daniel N. Wilke

The construction of surrogate models, such as radial basis function (RBF) and Kriging-based surrogates, requires an invertible (square and full rank matrix) or pseudoinvertible (overdetermined) linear system to be solved. This study demonstrates that the method used to solve this linear system may result in up to five orders of magnitude difference in the accuracy of the constructed surrogate model using exactly the same information. Hence, this paper makes the canonic and important point toward reproducible science: the details of solving the linear system when constructing a surrogate model must be communicated. This point is clearly illustrated on a single function, namely the Styblinski–Tang test function by constructing over 200 RBF surrogate models from 128 Latin Hypercubed sampled points. The linear system in the construction of each surrogate model was solved using LU, QR, Cholesky, Singular-Value Decomposition, and the Moore–Penrose pseudoinverse. As we show, the decomposition method influences the utility of the surrogate model, which depends on the application, i.e., whether an accurate approximation of a surrogate is required or whether the ability to optimize the surrogate and capture the optimal design is pertinent. Evidently the selection of the optimal hyperparameters based on the cross validation error also significantly impacts the utility of the constructed surrogate. For our problem, it turns out that selecting the hyperparameters at the lowest cross validation error favors function approximation but adversely affects the ability to optimize the surrogate model. This is demonstrated by optimizing each constructed surrogate model from 16 fixed initial starting points and recording the optimal designs. For our problem, selecting the optimal hyperparameter that coincides with the lowest monotonically decreasing function value significantly improves the ability to optimize the surrogate for most solution strategies.

2014 ◽  
Vol 568-570 ◽  
pp. 168-171 ◽  
Author(s):  
Yong Sun ◽  
Jun Wei Zhao

The least square algorithms were widely used in the estimation of localizing and tracing situation in military fields. In this paper, we proposed a method of using a full rank matrix instead of using singular value decomposition to solving the non-full rank matrix. Therefore the improving least square (ILS) algorithm was emerged at this situation. The simulation results show that the proposed tracing algorithm exhibits higher accuracy compared with the least square algorithm. This new method can take full application of the measured information to improved the tracing accuracy in the whole controlled area.


Author(s):  
Kevin Cremanns ◽  
Dirk Roos ◽  
Simon Hecker ◽  
Peter Dumstorff ◽  
Henning Almstedt ◽  
...  

The demand for energy is increasingly covered through renewable energy sources. As a consequence, conventional power plants need to respond to power fluctuations in the grid much more frequently than in the past. Additionally, steam turbine components are expected to deal with high loads due to this new kind of energy management. Changes in steam temperature caused by rapid load changes or fast starts lead to high levels of thermal stress in the turbine components. Therefore, todays energy market requires highly efficient power plants which can be operated under flexible conditions. In order to meet the current and future market requirements, turbine components are optimized with respect to multi-dimensional target functions. The development of steam turbine components is a complex process involving different engineering disciplines and time-consuming calculations. Currently, optimization is used most frequently for subtasks within the individual discipline. For a holistic approach, highly efficient calculation methods, which are able to deal with high dimensional and multidisciplinary systems, are needed. One approach to solve this problem is the usage of surrogate models using mathematical methods e.g. polynomial regression or the more sophisticated Kriging. With proper training, these methods can deliver results which are nearly as accurate as the full model calculations themselves in a fraction of time. Surrogate models have to face different requirements: the underlying outputs can be, for example, highly non-linear, noisy or discontinuous. In addition, the surrogate models need to be constructed out of a large number of variables, where often only a few parameters are important. In order to achieve good prognosis quality only the most important parameters should be used to create the surrogate models. Unimportant parameters do not improve the prognosis quality but generate additional noise to the approximation result. Another challenge is to achieve good results with as little design information as possible. This is important because in practice the necessary information is usually only obtained by very time-consuming simulations. This paper presents an efficient optimization procedure using a self-developed hybrid surrogate model consisting of moving least squares and anisotropic Kriging. With its maximized prognosis quality, it is capable of handling the challenges mentioned above. This enables time-efficient optimization. Additionally, a preceding sensitivity analysis identifies the most important parameters regarding the objectives. This leads to a fast convergence of the optimization and a more accurate surrogate model. An example of this method is shown for the optimization of a labyrinth shaft seal used in steam turbines. Within the optimization the opposed objectives of minimizing leakage mass flow and decreasing total enthalpy increase due to friction are considered.


2015 ◽  
Vol 27 (6) ◽  
pp. 1186-1222 ◽  
Author(s):  
Bryan P. Tripp

Because different parts of the brain have rich interconnections, it is not possible to model small parts realistically in isolation. However, it is also impractical to simulate large neural systems in detail. This article outlines a new approach to multiscale modeling of neural systems that involves constructing efficient surrogate models of populations. Given a population of neuron models with correlated activity and with specific, nonrandom connections, a surrogate model is constructed in order to approximate the aggregate outputs of the population. The surrogate model requires less computation than the neural model, but it has a clear and specific relationship with the neural model. For example, approximate spike rasters for specific neurons can be derived from a simulation of the surrogate model. This article deals specifically with neural engineering framework (NEF) circuits of leaky-integrate-and-fire point neurons. Weighted sums of spikes are modeled by interpolating over latent variables in the population activity, and linear filters operate on gaussian random variables to approximate spike-related fluctuations. It is found that the surrogate models can often closely approximate network behavior with orders-of-magnitude reduction in computational demands, although there are certain systematic differences between the spiking and surrogate models. Since individual spikes are not modeled, some simulations can be performed with much longer steps sizes (e.g., 20 ms). Possible extensions to non-NEF networks and to more complex neuron models are discussed.


2019 ◽  
Vol 15 (2) ◽  
pp. 152-154
Author(s):  
Gyan Bahadur Thapa ◽  
J. López-Bonilla ◽  
R. López-Vázquez

We exhibit that the Singular Value Decomposition of a matrix Anxm implies a natural full-rank factorization of the matrix.


2019 ◽  
Vol 50 (2) ◽  
pp. 1993-2005 ◽  
Author(s):  
Xuanjiao Lv ◽  
Lin Xiao ◽  
Zhiguo Tan ◽  
Zhi Yang ◽  
Junying Yuan

1996 ◽  
Vol 8 (7) ◽  
pp. 1391-1420 ◽  
Author(s):  
David H. Wolpert

This is the second of two papers that use off-training set (OTS) error to investigate the assumption-free relationship between learning algorithms. The first paper discusses a particular set of ways to compare learning algorithms, according to which there are no distinctions between learning algorithms. This second paper concentrates on different ways of comparing learning algorithms from those used in the first paper. In particular this second paper discusses the associated a priori distinctions that do exist between learning algorithms. In this second paper it is shown, loosely speaking, that for loss functions other than zero-one (e.g., quadratic loss), there are a priori distinctions between algorithms. However, even for such loss functions, it is shown here that any algorithm is equivalent on average to its “randomized” version, and in this still has no first principles justification in terms of average error. Nonetheless, as this paper discusses, it may be that (for example) cross-validation has better head-to-head minimax properties than “anti-cross-validation” (choose the learning algorithm with the largest cross-validation error). This may be true even for zero-one loss, a loss function for which the notion of “randomization” would not be relevant. This paper also analyzes averages over hypotheses rather than targets. Such analyses hold for all possible priors over targets. Accordingly they prove, as a particular example, that cross-validation cannot be justified as a Bayesian procedure. In fact, for a very natural restriction of the class of learning algorithms, one should use anti-cross-validation rather than cross-validation (!).


2017 ◽  
Vol 20 (1) ◽  
pp. 164-176 ◽  
Author(s):  
Vasileios Christelis ◽  
Rommel G. Regis ◽  
Aristotelis Mantoglou

Abstract The computationally expensive variable density and salt transport numerical models hinder the implementation of simulation-optimization routines for coastal aquifer management. To reduce the computational cost, surrogate models have been utilized in pumping optimization of coastal aquifers. However, it has not been previously addressed whether surrogate modelling is effective given a limited number of numerical simulations with the seawater intrusion model. To that end, two surrogate-based optimization (SBO) frameworks are employed and compared against the direct optimization approach, under restricted computational budgets. The first, a surrogate-assisted algorithm, employs a strategy which aims at a fast local improvement of the surrogate model around optimal values. The other, balances global and local improvement of the surrogate model and is applied for the first time in coastal aquifer management. The performance of the algorithms is investigated for optimization problems of moderate and large dimensionalities. The statistical analysis indicates that for the specified computational budgets, the sample means of the SBO methods are statistically significantly better than those of the direct optimization. Additionally, the selection of cubic radial basis functions as surrogate models, enables the construction of very fast approximations for problems with up to 40 decision variables and 40 constraint functions.


Author(s):  
Ginés Rubio ◽  
Héctor Pomares ◽  
Ignacio Rojas ◽  
Luis Javier Herrera ◽  
Alberto Guillén

Sign in / Sign up

Export Citation Format

Share Document