Calculating Positive Invariant Sets: A Quantifier Elimination Approach

Author(s):  
Klaus Röbenack ◽  
Rick Voßwinkel ◽  
Hendrik Richter

A Lyapunov-based approach for calculating positive invariant sets in an automatic manner is presented. This is done using real algebraic geometry techniques, which are summed up under the term quantifier elimination (QE). Using available tools, the approach presented yields an algorithmizable procedure whose conservatism only depends on the initial choice for the Lyapunov candidate function. The performance of the approach is illustrated on a variant of the Rössler system and on the Lorenz-Haken system.

2014 ◽  
Vol 24 (11) ◽  
pp. 1450149 ◽  
Author(s):  
Konstantin E. Starkov

In this paper, we construct the polytope which contains all compact ω-limit sets of the four-dimensional Rössler system which is a generalization of the hyperchaotic Rössler system for the case of positive parameters. Further, we find a few three-dimensional planes containing all compact ω-limit sets for bounded positive half-trajectories located in some subdomains in the half-space z > 0. Besides, we analyze one case in which all compact ω-limit sets in the half-space z > 0 are contained in one three-dimensional plane. Our approach is based on a combination of the LaSalle theorem and the extreme-based localization method of compact invariant sets.


2021 ◽  
Vol 11 (15) ◽  
pp. 6955
Author(s):  
Andrzej Rysak ◽  
Magdalena Gregorczyk

This study investigates the use of the differential transform method (DTM) for integrating the Rössler system of the fractional order. Preliminary studies of the integer-order Rössler system, with reference to other well-established integration methods, made it possible to assess the quality of the method and to determine optimal parameter values that should be used when integrating a system with different dynamic characteristics. Bifurcation diagrams obtained for the Rössler fractional system show that, compared to the RK4 scheme-based integration, the DTM results are more resistant to changes in the fractionality of the system.


2010 ◽  
Vol 24 (22) ◽  
pp. 4325-4331
Author(s):  
XING-YUAN WANG ◽  
JUN-MEI SONG

This paper studies the hyperchaotic Rössler system and the state observation problem of such a system being investigated. Based on the time-domain approach, a simple observer for the hyperchaotic Rössler system is proposed to guarantee the global exponential stability of the resulting error system. The scheme is easy to implement and different from the other observer design that it does not need to transmit all signals of the dynamical system. It is proved theoretically, and numerical simulations show the effectiveness of the scheme finally.


2017 ◽  
Vol 82 (1) ◽  
pp. 347-358 ◽  
Author(s):  
PABLO CUBIDES KOVACSICS ◽  
LUCK DARNIÈRE ◽  
EVA LEENKNEGT

AbstractThis paper addresses some questions about dimension theory for P-minimal structures. We show that, for any definable set A, the dimension of $\bar A\backslash A$ is strictly smaller than the dimension of A itself, and that A has a decomposition into definable, pure-dimensional components. This is then used to show that the intersection of finitely many definable dense subsets of A is still dense in A. As an application, we obtain that any definable function $f:D \subseteq {K^m} \to {K^n}$ is continuous on a dense, relatively open subset of its domain D, thereby answering a question that was originally posed by Haskell and Macpherson.In order to obtain these results, we show that P-minimal structures admit a type of cell decomposition, using a topological notion of cells inspired by real algebraic geometry.


Sign in / Sign up

Export Citation Format

Share Document