A Computational Fluid Dynamics-Based Sensitivity Analysis of the Chemical Vapor Analysis Process to Synthesize Carbon Nanotubes

Author(s):  
C. Teixeira ◽  
A. F. Silva ◽  
L. A. Rocha

Abstract Over the last years, there has been a high interest in carbon nanotubes' (CNTs) applications due to their unique properties, mainly at mechanical and electrical levels. However, current synthesis processes, such as chemical vapor deposition (CVD), are highly unpredictable and inconsistent, which leads to an exhaustive trial-and-error methodology when extrapolating results. A sensitivity analysis based on computational fluid dynamics (CFD) is performed here to two distinct setups of the CVD process as a way to understand the synthesis process. Setups were computationally designed and simulated for various synthesis scenarios, where only the hydrocarbon flow and the process temperature were changed. Measuring synthesis conditions, such as concentrations and velocity, inside the tube furnace, for these scenarios allows the identification of which compound affects most each condition. Results showed that, when envisioning the process extrapolation, the synthesis conditions can be tuned via the accessed parameters.

2012 ◽  
Vol 1479 ◽  
pp. 111-116 ◽  
Author(s):  
Alejandro Gómez Sánchez ◽  
Lada Domratcheva Lvova ◽  
Víctor López Garza ◽  
Ramón Román Doval ◽  
María de Lourdes Mondragón Sánchez

ABSTRACTIn this paper, an experimental study aimed at achieving better control of the deposition patterns of carbon nanotubes (CNTs) is presented. CNTs were grown on a long of reactor by the catalytic chemical vapor deposition (CVD) of a benzene/ferrocene solution at 1073 K. The deposition patterns on the substrate were controlled for process times and carrier gas flow rates. In order to investigate the reaction mechanism and production rate for the growth of CNTs in catalyst CVD, computational fluid dynamics (CFD) model was developed in this study. Then the computational model was integrated with the dynamic model to optimize the process parameters formulating a correlation between turbulence, deposition rate for the growth of carbon nanotubes and parameters as process time and carrier gas flow rate. Scanning electron microscopes (SEM) are used to characterize carbon nanotubes products.


1991 ◽  
Vol 113 (4) ◽  
pp. 538-543 ◽  
Author(s):  
U. B. Mehta

Uncertainties are inherent in computational fluid dynamics (CFD). These uncertainties need to be systematically addressed and managed. Sources of these uncertainties are identified and some aspects of uncertainty analysis are discussed. Some recommendations are made for quantification of CFD uncertainties. A practical method of uncertainty analysis is based on sensitivity analysis. When CFD is used to design fluid dynamic systems, sensitivity-uncertainty analysis is essential.


1996 ◽  
Vol 33 (9) ◽  
pp. 163-170 ◽  
Author(s):  
Virginia R. Stovin ◽  
Adrian J. Saul

Research was undertaken in order to identify possible methodologies for the prediction of sedimentation in storage chambers based on computational fluid dynamics (CFD). The Fluent CFD software was used to establish a numerical model of the flow field, on which further analysis was undertaken. Sedimentation was estimated from the simulated flow fields by two different methods. The first approach used the simulation to predict the bed shear stress distribution, with deposition being assumed for areas where the bed shear stress fell below a critical value (τcd). The value of τcd had previously been determined in the laboratory. Efficiency was then calculated as a function of the proportion of the chamber bed for which deposition had been predicted. The second method used the particle tracking facility in Fluent and efficiency was calculated from the proportion of particles that remained within the chamber. The results from the two techniques for efficiency are compared to data collected in a laboratory chamber. Three further simulations were then undertaken in order to investigate the influence of length to breadth ratio on chamber performance. The methodology presented here could be applied to complex geometries and full scale installations.


2021 ◽  
Vol 54 ◽  
pp. 102207
Author(s):  
Cristian Inostroza ◽  
Alessandro Solimeno ◽  
Joan García ◽  
José M. Fernández-Sevilla ◽  
F. Gabriel Acién

Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 332
Author(s):  
Hong Yong Sohn ◽  
De-Qiu Fan ◽  
Amr Abdelghany

The development of a novel ironmaking technology based on fine iron ore concentrate in a flash reactor is summarized. The design of potential industrial reactors for flash ironmaking based on the computational fluid dynamics technique is described. Overall, this simulation work has shown that the size of the reactor used in the novel flash ironmaking technology (FIT) can be quite reasonable vis-à-vis the blast furnaces. A flash reactor of 12 m diameter and 35 m height with a single burner operating at atmospheric pressure would produce 1.0 million tons of iron per year. The height can be further reduced by either using multiple burners, preheating the feed gas, or both. The computational fluid dynamics (CFD)-based design of potential industrial reactors for flash ironmaking pointed to a number of features that should be incorporated. The flow field should be designed in such a way that a larger portion of the reactor is used for the reduction reaction but at the same time excessive collision of particles with the wall must be avoided. Further, a large diameter-to-height ratio that still allows a high reduction degree should be used from the viewpoint of decreased heat loss. This may require the incorporation of multiple burners and solid feeding ports.


Sign in / Sign up

Export Citation Format

Share Document