Numerical Investigation on the Effect of Tube Geometry and Feeder Height on the Heat Transfer Performance of Horizontal Tube Falling Film Evaporation

2019 ◽  
Vol 141 (11) ◽  
Author(s):  
D. Balaji ◽  
R. Velraj ◽  
M. V. Ramana Murthy

Abstract This paper discusses about the effect of tube geometry and liquid feeder height on the heat transfer performance of falling film evaporation over the horizontal heated plain tubes. To investigate this, a two-dimensional computational fluid dynamics (CFD) model was developed, compared, and validated with published data available in the literature. A numerical simulation was carried out for varying liquid load, tube diameter, liquid feeder height, and corresponding changes in the heat transfer co-efficient (HTC), and mass transfer rate was recorded and analyzed. An attempt was also made to measure the thickness of the film around the tubes from the simulation model. Mechanisms that control the factors such as HTC, film thickness, and mass transfer were numerically investigated and discussed in this work. Numerical results indicated that low value of liquid film thickness appears approximately at the angular position of the range between 90 deg and 125 deg. Also the numerical investigation revealed that liquid film thickness decreases and HTC and mass transfer rate increases with the increase of feeder height. No remarkable change in film thickness was observed with increase in the tube diameter. This numerical study also proved that the prediction of thermally developed boundary region on the circumference of the tube could be possible in terms of mass transfer rate. It was also observed from the numerical study that the highest mass transfer rate takes place between the angle 135–165 deg near to the bottom of the tube.

2021 ◽  
pp. 56-56
Author(s):  
Dilli Balaji ◽  
Ramalingam Velraj ◽  
Malavarappu Ramanamurthy

This paper discusses about the effect of un-wetted area of tube on the heat transfer performance of horizontal tube falling film evaporation. A 2D CFD model was developed to perform simulations and investigate the output and validated them with published data available in the literature. In the present study the VOF method is used to track the boundary of the liquid vapour from the contours of volume fraction. Effect of varying tube wall temperature or wall super heat (6 to 11?C) on un-wetted area, heat transfer co-efficients and mass transfer co-efficients of the circular tube were obtained from the simulation model and the results were analysed and reasons were identified and discussed here. The threshold value of wall super heat above which phase change occurs between liquid film and tube surface is identified as 6?C. Also it is noted that mass transfer rate increases and then decreases with increase of wall super heat and heat transfer co-efficient showed declining trend.


2012 ◽  
Vol 614-615 ◽  
pp. 296-300 ◽  
Author(s):  
Wei Kang Hu ◽  
Li Yang ◽  
Lei Hong Guo

This paper mainly studies the falling film evaporator in the field of water desalination. Using the method of fluent simulates the process of the liquid flowing and heat-transfer on the horizontal-tube falling film evaporation. The author analyses the distribution of the liquid film, and obtain the rule that spray density, evaporation temperature, temperature difference and pipe diameter affect the performance of heat-transfer in a certain range. So the paper plays a guiding role in heat transfer enhancement in the falling film evaporator.


Author(s):  
Wei Li ◽  
Xiaoyu Wu ◽  
Zhong Luo

This paper reports an experimental study on falling film evaporation of water on 6-row horizontal configured tube bundles in a vacuum. Three types of configured tubes, Turbo-CAB-19fpi and −26fpi, Korodense, including smooth tubes for reference, were tested in a range of film Reynolds number from about 10 to 110. Results show that as the falling film Reynolds number increases, falling film evaporation goes from tubes partial dryout regime to fully wet regime; the mean heat transfer coefficients reach peak values in the transition point. Turbo-CAB tubes have the best heat transfer enhancement of falling film evaporation in both regimes, but Korodense tubes’ overall performances are better when tubes are fully wet. The inlet temperature of heating water has hardly any effects on the heat transfer, but the evaporation pressure has controversial effects. A correlation with errors within 10% was also developed to predict the heat transfer enhancement capacity.


Author(s):  
Lei Wang ◽  
Weiyu Tang ◽  
Limin Zhao ◽  
Wei Li

Abstract An experimental investigation was conducted on falling film evaporation along two porous tubes, which were sintered by stainless-steel powder with a diameter of 0.45 and 1 um, respectively. The test section is a 2 m long sintered tube with an outer diameter of 25 mm and a wall thickness of 2 mm. During the experiment, the pressure inside the tube was maintained at 1 atm, the inlet temperature was 373 K, and mass flux ranged from 0.51 to 1.36 kg/ (m s). Conditions of the steam outside the pipe, which was the heat source, were fixed, while the fouling tests were carried out at a constant mass flow of 0.74 kg/ (m s) using high-concentration brine as work fluid. The overall heat transfer coefficient under different working conditions was tested and compared with the stainless steel smooth tube of the same dimensions. The heat transfer coefficient of the two porous stainless tubes are about 35% and 20% lower than that of the smooth one, showing an inferior effect because the steam in the pores of the pipe wall during the infiltration process will reduce the heat conductivity. The heat transfer coefficient of the smooth tube deteriorated severely due to the deposition of calcium carbonate, which had little effect on the sintered tubes. Besides, the fouling weight of porous tubes is 2.01 g and 0 g compared with 5.52 g of the smooth tube.


2015 ◽  
Vol 48 (7) ◽  
pp. 528-532
Author(s):  
Xiaoyu Quan ◽  
Yongqiang Luo ◽  
Siyuan Qie ◽  
Zheqing Huang ◽  
Chunjiang Liu

Sign in / Sign up

Export Citation Format

Share Document