Numerical Simulation of the Liquid Flowing and Heat-Transfer outside the Tube of the Horizontal-Tube Falling Film Evaporator

2012 ◽  
Vol 614-615 ◽  
pp. 296-300 ◽  
Author(s):  
Wei Kang Hu ◽  
Li Yang ◽  
Lei Hong Guo

This paper mainly studies the falling film evaporator in the field of water desalination. Using the method of fluent simulates the process of the liquid flowing and heat-transfer on the horizontal-tube falling film evaporation. The author analyses the distribution of the liquid film, and obtain the rule that spray density, evaporation temperature, temperature difference and pipe diameter affect the performance of heat-transfer in a certain range. So the paper plays a guiding role in heat transfer enhancement in the falling film evaporator.

2016 ◽  
Vol 139 (1) ◽  
Author(s):  
Shengqiang Shen ◽  
Xue Chen ◽  
Xingsen Mu ◽  
Changkun Jiang

The overall heat transfer process in a horizontal tube falling film evaporator is mainly influenced by the falling film evaporation outside horizontal tube due to the average heat transfer coefficient which is about 50% of that of the condensation inside tube. A series of experimental studies were conducted to investigate the heat transfer coefficients of the falling film evaporation outside the horizontal tube with parameters such as the spray density, the evaporation temperature, the salinity, and the tube spacing. Experiments were conducted by using Al-brass tubes with 19 mm outer diameter and 1600 mm length. The horizontal tubes are arranged vertically in the evaporator. The test tube is heated by an internal electric heater with uniform heat flux. Temperatures of the test tube surface and saturated vapor measured by thermocouples are used to calculate the heat transfer coefficients. The seawater with salinity of 1.5%, 3.0%, and 4.5% was used as experimental fluid. The spray density varied between 0.017 and 0.087 kg/(m s), and the evaporation temperature was controlled in the range of 50–70 °C. Results show that the average heat transfer coefficients of water under different salinities increase obviously with the spray density until a certain point. The average heat transfer coefficients of seawater decrease slightly with the evaporation temperature, decrease with the salinity, increase with the tube spacing, and are almost independent of the heat flux. In addition, the comparisons with 25.4 mm outer diameter tube and the circumferential distribution of local heat transfer coefficient are presented in this study.


2020 ◽  
Vol 10 (5) ◽  
pp. 1632 ◽  
Author(s):  
Tsutomu Ubara ◽  
Hitoshi Asano ◽  
Katsumi Sugimoto

Falling film evaporators are gaining popularity as substitutes to typical flooded evaporators because of their low refrigerant charge. It is important to form and keep a thin liquid film on the heat transfer surface to ensure their high heat transfer performance. In this study, as a heat transfer enhancement surface, a fine porous surface processed using thermal spray coating was applied to a smooth copper tube with an outer diameter of 19.05 mm. Heat transfer coefficients of falling film evaporation on a single horizontal tube were experimentally evaluated using the HFC-134a refrigerant. The experiments were performed at a saturation temperature of 20 °C with the heat flux ranging from 10 to 85 kW·m−2 and for film Reynolds numbers up to 673. The study aimed to clarify the effect of the coating on the heat transfer characteristics of falling film evaporation. The results revealed that the coating could suppress partial dry out and enhance nucleate boiling in the falling film. The maximum heat transfer enhancement factor was 5.2 in the experimental range. It was further noted that the effect of the coating was especially strong under a low heat flux condition.


Author(s):  
Wei Li ◽  
Xiaoyu Wu ◽  
Zhong Luo

This paper reports an experimental study on falling film evaporation of water on 6-row horizontal configured tube bundles in a vacuum. Three types of configured tubes, Turbo-CAB-19fpi and −26fpi, Korodense, including smooth tubes for reference, were tested in a range of film Reynolds number from about 10 to 110. Results show that as the falling film Reynolds number increases, falling film evaporation goes from tubes partial dryout regime to fully wet regime; the mean heat transfer coefficients reach peak values in the transition point. Turbo-CAB tubes have the best heat transfer enhancement of falling film evaporation in both regimes, but Korodense tubes’ overall performances are better when tubes are fully wet. The inlet temperature of heating water has hardly any effects on the heat transfer, but the evaporation pressure has controversial effects. A correlation with errors within 10% was also developed to predict the heat transfer enhancement capacity.


Desalination ◽  
2016 ◽  
Vol 394 ◽  
pp. 64-71 ◽  
Author(s):  
Luopeng Yang ◽  
Yang Liu ◽  
Yan Yang ◽  
Shengqiang Shen

Author(s):  
Xingsen Mu ◽  
Yong Yang ◽  
Shengqiang Shen ◽  
Gangtao Liang ◽  
Luyuan Gong

The horizontal-tube falling film evaporation is a widely adopted technique in multiple-effect distillation (MED) desalination plant due to the higher heat transfer coefficient under quite small temperature differences. In the present study, an experimental platform for horizontal-tube falling film evaporation was set up to measure its heat transfer characteristics. Results indicate that heat transfer coefficient (h) for both fresh water and seawater are almost independent with heat flux. The h increases firstly and then decreases with growth of Re. Along the tube circumference, the h increases after decreasing. In addition, the distribution of h for fresh water and seawater at the different evaporation temperatures and Reynolds number (Re) are also provided.


Sign in / Sign up

Export Citation Format

Share Document