A New Integrated Ocean Thermal Energy Conversion-Based Trigeneration System for Sustainable Communities

2019 ◽  
Vol 142 (6) ◽  
Author(s):  
A. Hasan ◽  
I. Dincer

Abstract One of the main solutions to climate change is to harness energy from renewable and clean resources. A novel ocean thermal energy conversion (OTEC) system is proposed for the production of methanol; cooling and power is developed and energetically analyzed. In this proposed trigeneration system, a two-stage Rankine cycle that operates on the inherent temperature difference along the depth of the ocean is used for power production, along with an electrolytic cation exchange membrane (ECEM) reactor for carbon dioxide and hydrogen production to feed the methanol production system. The carbon dioxide is sourced from the deep cold seawater, where the concentrations are found to be the highest. The proposed system performance is modeled and simulated on the Aspen Plus, where the performance of the proposed system is assessed under various operating conditions. The results of this study shows that the maximum net power output of the cycle is found to be 51.5 GW, with a fixed rate of district cooling of 69.0 GW. The maximum methanol production rate was found to be 1.36 kg/s at the power input of 51.5 GW. The system is tested under three different operation cases, to fully assess its viability. It should be noted that in all three cases district cooling is included as a product of the system. Case 1: ECEM reactor operates at its current efficiency with fuel production, Case 2: ECEM reactor operates at proton exchange membrane (PEM) efficiency, and Case 3: Only power was produced with no fuel. The maximum overall energy efficiency of the cycle was found to be 8.0, 8.6, and 7.3% for Cases 1, 2, and 3, respectively.

2014 ◽  
Vol 137 (1) ◽  
Author(s):  
Pouria Ahmadi ◽  
Ibrahim Dincer ◽  
Marc A. Rosen

A new multigeneration system based on an ocean thermal energy conversion (OTEC) system equipped with flat plate and PV/T solar collectors, a reverse osmosis (RO) desalination unit to produce fresh water, a single effect absorption chiller, and proton exchange membrane (PEM) electrolyzer is proposed and thermodynamically assessed. Both energy and exergy analyses are employed to determine the irreversibilities in each component and assess the system performance. A parametric study is performed to investigate the effects of varying design parameters and operating conditions on the system energy and exergy efficiencies. In addition, an economic assessment of the multigeneration system is performed, and the potential reduction in total cost rate when the system shifts from power generation to multigeneration are investigated.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2192
Author(s):  
Robert J. Brecha ◽  
Katherine Schoenenberger ◽  
Masaō Ashtine ◽  
Randy Koon Koon

Many Caribbean island nations have historically been heavily dependent on imported fossil fuels for both power and transportation, while at the same time being at an enhanced risk from the impacts of climate change, although their emissions represent a very tiny fraction of the global total responsible for climate change. Small island developing states (SIDSs) are among the leaders in advocating for the ambitious 1.5 °C Paris Agreement target and the transition to 100% sustainable, renewable energy systems. In this work, three central results are presented. First, through GIS mapping of all Caribbean islands, the potential for near-coastal deep-water as a resource for ocean thermal energy conversion (OTEC) is shown, and these results are coupled with an estimate of the countries for which OTEC would be most advantageous due to a lack of other dispatchable renewable power options. Secondly, hourly data have been utilized to explicitly show the trade-offs between battery storage needs and dispatchable renewable sources such as OTEC in 100% renewable electricity systems, both in technological and economic terms. Finally, the utility of near-shore, open-cycle OTEC with accompanying desalination is shown to enable a higher penetration of renewable energy and lead to lower system levelized costs than those of a conventional fossil fuel system.


2020 ◽  
Vol 9 (1) ◽  
pp. 22
Author(s):  
Sathiabama T. T. Thirugnana ◽  
Abu Bakar Jaafar ◽  
Takeshi Yasunaga ◽  
Tsutomu Nakaoka ◽  
Yasuyuki Ikegami ◽  
...  

The Malaysian Government has set a target of achieving 20% penetration of Renewable Energy (RE) in the energy mix spectrum by 2025. In order to get closer to the target, Ocean Thermal Energy Conversion (OTEC) aligned with solar PV, biogas and biomass energy sources must be evaluated and comprehended. Hybrid OTEC systems consisting of energy and water production are currently under research and validation. Therefore, for the construction of a commercial OTEC plant, 1 MW or 2.5 MW, the choice of a strategic location or potential site is vital. In this paper, oceanographic data such as seawater temperature, depth, salinity and dissolved oxygen obtained from the Japan Oceanographic Data Center (JODC) for Semporna, Tawau, Kudat, Pulau Layang-Layang and Pulau Kalumpang in Sabah, Malaysia, are reported. The RE available from the Exclusive Economic Zone (EEZ) on the coast of Sabah was estimated based on the JODC data obtained. There were no remarkable differences in temperatures between the five sites, which were reported as approximately 27 °C at the surface and 7 °C at depths below 600 m. The surface salinities below 100 m at those sites were slightly lower than the deeper waters, where the salinity increased up to approximately 34.5 PSU. Dissolved oxygen data from the Pulau Kalumpang site showed a slight increment to approximately 4.7 mL/L at depth intervals below 50 m, before declining steadily to approximately 1.7 mL/L along with the depth. The temperature-salinity profiles of the Malaysian sites were congruent with those of Palau, Kumejima and Okinawa, but not with that of Fiji, where the salinity profile showed a distinct variation at the relative depth (below 200 m). Estimates of RE using two different methods were used to prove the potential of OTEC in Malaysia.


Energy ◽  
2021 ◽  
Vol 224 ◽  
pp. 120121
Author(s):  
Jannis Langer ◽  
Aida Astuti Cahyaningwidi ◽  
Charis Chalkiadakis ◽  
Jaco Quist ◽  
Olivier Hoes ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document