scholarly journals Artificial Neural Networks in Radiation Heat Transfer Analysis

2020 ◽  
Vol 142 (9) ◽  
Author(s):  
Mehran Yarahmadi ◽  
J. Robert Mahan ◽  
Kevin McFall

Abstract In the Monte Carlo ray-trace (MCRT) method, millions of rays are emitted and traced throughout an enclosure following the laws of geometrical optics. Each ray represents the path of a discrete quantum of energy emitted from surface element i and eventually absorbed by surface element j. The distribution of rays absorbed by the n surface elements making up the enclosure is interpreted in terms of a radiation distribution factor matrix whose elements represent the probability that energy emitted by element i will be absorbed by element j. Once obtained, the distribution factor matrix may be used to compute the net heat flux distribution on the walls of an enclosure corresponding to a specified surface temperature distribution. It is computationally very expensive to obtain high accuracy in the heat transfer calculation when high spatial resolution is required. This is especially true if a manifold of emissivities is to be considered in a parametric study in which each value of surface emissivity requires a new ray-trace to determine the corresponding distribution factor matrix. Artificial neural networks (ANNs) offer an alternative approach whose computational cost is greatly inferior to that of the traditional MCRT method. Significant computational efficiency is realized by eliminating the need to perform a new ray trace for each value of emissivity. The current contribution introduces and demonstrates through case studies estimation of radiation distribution factor matrices using ANNs and their subsequent use in radiation heat transfer calculations.

2019 ◽  
Vol 141 (3) ◽  
Author(s):  
Mehran Yarahmadi ◽  
J. Robert Mahan ◽  
Kory J. Priestley

Despite the dominant role of the Monte Carlo ray-trace (MCRT) method in modern radiation heat transfer analysis, the contemporary literature remains surprisingly reticent on the uncertainty of results obtained using it. After first identifying the radiation distribution factor as a population proportion, standard statistical procedures are used to estimate its mean uncertainty, to a stated level of confidence, as a function of the number of surface elements making up the enclosure and the number of rays traced per surface element. This a priori statistical uncertainty is then shown to compare favorably with the observed variability in the distribution factors obtained in an actual MCRT-based analysis. Finally, a formal approach is demonstrated for estimating, to a prescribed level of confidence, the uncertainty in predicted heat transfer. This approach provides a basis for determining the minimum number of rays per surface element required to obtain the desired accuracy.


2019 ◽  
Vol 141 (6) ◽  
Author(s):  
Mehran Yarahmadi ◽  
J. Robert Mahan ◽  
Kory J. Priestley

In a recent contribution, the authors show that the uncertainty in heat transfer results obtained using the Monte Carlo ray-trace (MCRT) method is related to the median of the radiation distribution factor probability density function (PDF). The value of this discovery would be significantly enhanced if the median could be known a priori without first computing the distribution factors. This would allow the user to determine the number of rays required to achieve the desired accuracy of a subsequent heat transfer analysis. The current contribution presents a correlation for the median of the distribution factor PDF as a function of emissivity and the number of surface elements defining an enclosure. The correlation involves a single parameter whose value is unique for a given enclosure geometry. We find that the radiation behavior of a given enclosure can be classified on a scale ranging from reflection-dominated to geometry-dominated. The correlation is shown to work well for reflection-dominated enclosures but less well for geometry-dominated enclosures.


Sign in / Sign up

Export Citation Format

Share Document