scholarly journals Array Jet Impingement On High Porosity Thin Metal Foams: Effect of Foam Height, Pore-Density and Spent Air Crossflow Scheme On Flow Distribution and Heat Transfer

2020 ◽  
Author(s):  
Vivek Subramaniam Sambamurthy ◽  
Srivatsan Madhavan ◽  
Prashant Singh ◽  
Srinath V. Ekkad

Abstract An experimental investigation was carried out to study heat transfer and fluid flow in high porosity (93%) thin metal foams subjected to array jet impingement, under maximum and intermediate crossflow exit schemes. Separate effects of pore-density and jet-to-target spacing (z/d) have been studied. To this end, for a fixed pore-density of 40PPI foams, three different jet-to-target spacing (z/d=1, 2, 6) were investigated, and for a fixed z/d of 6, three different pore-density of 5, 20 and 40PPI were investigated. The jet diameter-based Reynolds number was varied between 3,000-12,000. Experiments were carried out to characterize local flow distribution and Nusselt numbers for different jet impingement configurations. The heat transfer results were obtained through steady-state experiments. Local flow measurements show that, as z/d decreases, the mass flux distributions are increasingly skewed with higher mass flow rates near the exits. Heat transfer enhancement has been calculated and the optimum foam configuration has been deduced from the pumping power. It was observed that Nusselt number increases with increasing pore density at a fixed z/d and reduces with increase in z/d at constant pore density. Intermediate crossflow had higher heat transfer than maximum crossflow with significantly lower pumping power. Under a constant pumping power condition, z/d = 2, 40ppi foam provided an average enhancement of 35% over the corresponding baseline configuration for intermediate crossflow scheme and was found to be the most optimum configuration.

Author(s):  
Srivatsan Madhavan ◽  
Prashant Singh ◽  
Srinath Ekkad

High-porosity metal foams are known for providing high heat transfer rates, as they provide a significant increase in wetted surface area as well as highly tortuous flow paths resulting in enhanced mixing. Further, jet impingement offers high convective cooling, particularly at the jet footprint areas on the target surface due to flow stagnation. In this study, high-porosity thin metal foams were subjected to array jet impingement, for a special crossflow scheme. High porosity (92.65%), high pore density (40 pores per inch (ppi)), and thin foams (3 mm) have been used. In order to reduce the pumping power requirements imposed by full metal foam design, two striped metal foam configurations were also investigated. For that, the jets were arranged in 3 × 6 array (x/dj = 3.42, y/dj = 2), such that the crossflow is dominantly sideways. Steady-state heat transfer experiments have been conducted for varying jet-to-target plate distance z/dj = 0.75, 2, and 4 for Reynolds numbers ranging from 3000 to 12,000. The baseline case was jet impingement onto a smooth target surface. Enhancement in heat transfer due to impingement onto thin metal foams has been evaluated against the pumping power penalty. For the case of z/dj = 0.75 with the base surface fully covered with metal foam, an average heat transfer enhancement of 2.42 times was observed for a concomitant pressure drop penalty of 1.67 times over the flow range tested.


Author(s):  
Srivatsan Madhavan ◽  
Vivek Subramaniam Sambamurthy ◽  
Prashant Singh ◽  
Srinath Ekkad

Abstract Array jet impingement heat transfer onto thin metal foams of different pore densities has been experimentally investigated in the current study. Aluminum foams with high porosity (93%) and different pore densities of 5, 20 and 40 ppi are subjected to array jet impingement under an intermediate crossflow exit scheme. The jets are arranged such that the streamwise jet-to-jet spacing is x/dj = 8 and spanwise jet-to-jet spacing is y/dj = 4. Jet to target plate spacing was maintained at z/dj = 6 where ‘z’ is the distance between the jet plate and the target surface on which metal foams were installed. A steady state heat transfer technique has been used to obtain local heat transfer coefficients along the streamwise direction. It is observed that heat transfer enhancement levels increase as pore density increases. An enhancement of 50–100% over the baseline case of impingement onto smooth surface is obtained over the flow range tested (3000 < Redj < 12000). At a constant pumping power of 40 W, an enhancement of 26–33% is obtained for the different pore densities tested.


Author(s):  
Srivatsan Madhavan ◽  
Prashant Singh ◽  
Srinath V. Ekkad

High porosity metal foams are known for providing high heat transfer rates, as they provide significant increase in wetted surface area as well as highly tortuous flow paths to coolant flowing over fibers. Further, jet impingement is also known to offer high convective cooling, particularly on the footprints of the jets on the target to be cooled. Jet impingement, however, leads to large special gradients in heat transfer coefficient, leading to increased thermal stresses. In this study, we have tried to use high porosity thin metal foams subjected to array jet impingement, for a special crossflow scheme. One aim of using metal foams is to achieve cooling uniformity also, which is tough to achieve for impingement cooling. High porosity (92.65%) and high pore density (40 pores per inch, 3 mm thick) foams have been used as heat transfer enhancement agents. In order to reduce the pumping power requirements imposed by full metal foam design, we developed two striped metal foam configurations. For that, the jets were arranged in 3 × 6 array (x/d = 3.42, y/d = 2), such that the crossflow is dominantly sideways. This crossflow scheme allowed usage of thin stripes, where in one configuration we studied direct impingement onto stripes of metal foam and in the other, we studied impingement onto metal and crossflow interacted with metal foams. Steady state heat transfer experiments have been conducted for a jet plate configuration with varying jet-to-target plate distance z/d = 0.75, 2 and 4. The baseline case was jet impingement onto a smooth target surface. Jet diameter-based Reynolds number was varied between 3000 to 11000. Enhancement in heat transfer due to impingement onto thin metal foams has been evaluated against the enhancement in pumping power requirements. For a specific case of z/d = 0.75 with the base surface fully covered with metal foam, metal foams have enhanced heat transfer by 2.42 times for a concomitant pressure drop penalty of 1.67 times over the flow range tested.


Author(s):  
Prashant Singh ◽  
Mingyang Zhang ◽  
Jaideep Pandit ◽  
Roop L. Mahajan

Metal foams enhance heat transfer rates by providing significant increase in wetted surface area and by thermal dispersion caused by flow mixing induced by the tortuous flow paths. Further, jet impingement is also an effective method of enhancing local convective heat transfer rates. In the present study, we have carried out an experimental investigation to study the combined effect of the two thermal performance-enhancement mechanisms. To this end, we conducted a set of experiments to determine convective heat transfer rates by impinging an array of jets onto thin metal foams attached on a uniformly heated smooth aluminum plate simulating a high heat-dissipating chip. The metal foams used were high porosity aluminum foams (ε∼0.94–0.96) with pore densities of 5 ppi, 10 ppi and 20 ppi (ppi: pores per inch) with thicknesses of 19 mm, 12.7 mm and 6.35 mm, respectively. With the jet-to-foam distance (z/d) set to zero, we conducted experiments with values of jet-to-jet spacing (x/d = y/d) of 2, 3 and 5. The jet plate featured an array of 5 × 5 cylindrical jet-issuing nozzles. The normalized jet-to-jet distance was varied by changing the jet diameter and keeping the jet center-to-center distance constant. Steady state heat transfer and pressure drop experiments were carried out for Reynolds number (based on jet diameter) ranging from 2500 to 10000. We have found that array impingement on thin foams leads to a significant enhancement in heat transfer compared to normal impingement over smooth surfaces. The gain in heat transfer was greatest for the 20 ppi foam (∼2.3 to 2.8 times that for the plain surface smooth target). However, this enhancement came at a significant increase of about 2.85 times in the plenum static pressure. With the pressure drop penalty taken into consideration, the x/d = 3 jet plate for the 20 ppi foam and x/d = 2 jet plate for the 10 ppi foam were found to be the most efficient cooling designs amongst the 18 cooling designs investigated in the present study.


Author(s):  
Prashant Singh ◽  
Mingyang Zhang ◽  
Roop L. Mahajan

Abstract High porosity metal foam is a popular option for high performance heat exchangers as it offers significantly larger area per unit volume for heat dissipation as compared to other cooling techniques by convection. Further, metal foams provide highly tortuous flow paths resulting in thermal dispersion assisted by enhanced mixing. This paper reports an experimental study on jet array impingement onto high-porosity (ε∼0.95) thin aluminum foams. Our goal was to study the effect of foam thickness on convective transport and determine the optimum combination of foam thickness and pore density for maximum gain in thermal-hydraulic performance. To this end, three different pore-density foams (5, 10 and 20 pores per inch, ppi) were tested with three different jet array (5 × 5) impingement configurations (x/dj = 2,3 and 5), where “x” is the distance between any two adjacent jets and “dj” is the jet diameter. For the three pore densities selected, six values of foam thickness — 6.35 mm, 12.7 mm and 19.05 mm for the 20 ppi foam, 12.7 mm and 19.05 mm for the 10 ppi foam, and 12.7 mm for the 5 ppi foam — were deployed. The minimum thickness for each of the ppi value was dictated by the vendor’s manufacturing constraint. The thermal performance of these foams was compared against the orthogonal jet impingement onto a smooth heated surface, for which the distance between the jet exit plane and the heated surface was maintained at the foam thickness level. The data indicates that for a given pore density, thin foams have higher heat transfer rates compared to those for thicker foams, especially with jet configurations with larger open area ratios. The gain is due to the increased jet penetration and foam volume usage in thin foams compared to those for thick foams. Of the different pore density and foam thickness combinations, a 12.70 mm/20 ppi combination was found to have the highest thermal hydraulic performance.


2021 ◽  
Author(s):  
Sandip Dutta ◽  
Prashant Singh

Abstract Impingement heat transfer is considered as one of the most effective cooling technologies that yields in high localized convective heat transfer coefficient. This paper studies different configurational parameters involved in jet impingement cooling such as, exit orifice shape, crossflow regulation, target surface modification, spent air reuse, impingement channel modification, jet pulsation, and other techniques to understand what are critical and how these heat transfer enhancement concepts work. These enhancement factors have been explored in detail by many researchers, including standard parameters such as normalized distance between adjacent jets and jet-to-target spacing, and those known benefits are not repeated here. The aim of this paper is to stimulate the current scientific knowledge of this efficient cooling technique and instill some thoughts for future innovations. New orifice shapes are becoming feasible due to 3D printing technologies. However, the orifice studies show that it is hard to beat a sharp-edged round orifice. Any attempt to streamline the hole shape indicated a drop in the Nusselt number. Reduction in crossflow has been attempted with channel modifications. Use of high porosity conductive foam in the impingement space has shown marked improvement in heat transfer performance. A list of possible research topics based on this discussion are provided in conclusion.


Author(s):  
Varun Prasanna Rajamuthu ◽  
Sanskar Panse ◽  
Srinath V. Ekkad

Abstract High porosity, high pore-density (pores per inch: PPI) metal foams are a popular choice in high heat flux cooling applications as they offer large heat transfer area over a given volume, however, accompanied by a concomitant increase in pumping power requirements. Present experimental study aims towards developing a novel metal-foam based cooling configuration featuring thin copper foams (3 mm) subjected to orthogonal air jet array impingement. The foam configurations allowed strategic and selective placement of high pore-density (90 PPI) and high porosity (~ 96%) copper foam on the heated surface with respect to the jet array in the form of foam stripes aiming to enhance heat transfer and reduce pressure drop penalty. The thermal-hydraulic performance was evaluated over range of Reynolds numbers, jet-to-jet (x/dj ,y/dj) and jet-to-target (z/dj) spacings and compared with a baseline smooth surface. The effect of pore-density was further analyzed by studying 40 PPI copper foam and compared with corresponding 90 PPI foam arrangement. The thermal-hydraulic performance was found to be governed by combinational interaction of three major factors: heat transfer area, ease of jet penetration and foam volume usage. Strategic placement of metal foam stripes allowed better utilization of the foam heat transfer area and available foam volume by aiding penetration of coolant fluid through available foam thickness. Thus, performing better than the case where entire heat transfer area was covered with foam. For a fixed pumping power of 10 W, the optimal metal foam-jet configuration showed ~50% higher heat transfer with negligible increase in pumping power requirements.


2020 ◽  
Vol 142 (5) ◽  
Author(s):  
Prashant Singh ◽  
Karthik Nithyanandam ◽  
Mingyang Zhang ◽  
Roop L. Mahajan

Abstract High-porosity metal foam (MF) is a popular option for high-performance heat exchangers as it offers significantly higher heat transfer participation area per unit volume compared to other convection enhancement cooling methods. Further, metal foams provide highly tortuous flow paths resulting in thermal dispersion assisted by enhanced mixing. This paper presents experimental and numerical studies and the detailed underlying physics of jet array impingement onto high-porosity (ε∼0.95) thin aluminum foams. The jet and foam configurations were designed for the maximum utilization of the foam area for heat transfer and reduced penalty on the pumping power requirement. Three different pore density foams were tested with three different array-jet impingement configurations. The minimum possible thickness for each pore density was tested, viz., 5 pores-per-inch (PPI): 19 mm, 10 PPI: 12.7 mm, and 20 PPI: 6.35 mm. The baseline case for these foam-based jet impingement configurations was the corresponding configuration of orthogonal jet impingement onto a smooth heated surface, where the distance between the jet-issuing plane and the heated surface was maintained at the foam thickness level. In general, thinner foams facilitated greater jet penetration and increased foam volume usage, resulting in higher heat transfer rates for a given pore density, especially when combined with jet configurations with larger open areas. Finally, we evaluated the thermal hydraulic performance for different foam configurations and the optimum value of a given PPI was found to be at an intermediate rather than the lowest foam thickness.


2020 ◽  
Vol 142 (8) ◽  
Author(s):  
Orkodip Mookherjee ◽  
Shantanu Pramanik ◽  
Uttam Kumar Kar

Abstract The thermal and fluid dynamic behavior of a confined two-dimensional steady laminar nanofluid jet impinging on a horizontal plate embedded with five discrete heating elements subjected to a constant surface heat flux has been studied for a range of Reynolds number (Re) from 100 to 400 with Prandtl number, Pr = 6.96, of the base fluid. Variation of inlet Reynolds number produces a significant change of the flow and heat transfer characteristics in the domain. Increasing the nanoparticle concentration (ϕ) from 0% to 4% exhibits discernible change in equivalent Re and Pr caused by the modification of dynamic viscosity, effective density, thermal conductivity, and specific heat of the base fluid. Considerable improvement in heat transfer from the heaters is observed as the maximum temperature of the impingement wall is diminished from 0.95 to 0.55 by increasing Re from 100 to 400; however, the result of increasing ϕ on cooling of the heaters is less appreciable. Self-similar behavior has been depicted by cross-stream variation of temperature and streamwise heat flux in the developed region along the impingement wall up to Re = 300 for ϕ=0% to 4%. But the spread of the respective quantities shows strong dependence on ϕ at Re = 300 with sudden attenuation in magnitude in the developed region of flow. Substantial influence of Re is evident on Eckert number and pumping power. Eckert number decreases, whereas pumping power increases with an increase in Re, and the respective variations exhibit correspondence with power fit correlations.


Sign in / Sign up

Export Citation Format

Share Document