Experimental Investigation of Heat Transfer Enhancement Through Array Jet Impingement on Various Configurations of High Porosity Thin Metal Foams

Author(s):  
Srivatsan Madhavan ◽  
Prashant Singh ◽  
Srinath V. Ekkad

High porosity metal foams are known for providing high heat transfer rates, as they provide significant increase in wetted surface area as well as highly tortuous flow paths to coolant flowing over fibers. Further, jet impingement is also known to offer high convective cooling, particularly on the footprints of the jets on the target to be cooled. Jet impingement, however, leads to large special gradients in heat transfer coefficient, leading to increased thermal stresses. In this study, we have tried to use high porosity thin metal foams subjected to array jet impingement, for a special crossflow scheme. One aim of using metal foams is to achieve cooling uniformity also, which is tough to achieve for impingement cooling. High porosity (92.65%) and high pore density (40 pores per inch, 3 mm thick) foams have been used as heat transfer enhancement agents. In order to reduce the pumping power requirements imposed by full metal foam design, we developed two striped metal foam configurations. For that, the jets were arranged in 3 × 6 array (x/d = 3.42, y/d = 2), such that the crossflow is dominantly sideways. This crossflow scheme allowed usage of thin stripes, where in one configuration we studied direct impingement onto stripes of metal foam and in the other, we studied impingement onto metal and crossflow interacted with metal foams. Steady state heat transfer experiments have been conducted for a jet plate configuration with varying jet-to-target plate distance z/d = 0.75, 2 and 4. The baseline case was jet impingement onto a smooth target surface. Jet diameter-based Reynolds number was varied between 3000 to 11000. Enhancement in heat transfer due to impingement onto thin metal foams has been evaluated against the enhancement in pumping power requirements. For a specific case of z/d = 0.75 with the base surface fully covered with metal foam, metal foams have enhanced heat transfer by 2.42 times for a concomitant pressure drop penalty of 1.67 times over the flow range tested.

Author(s):  
Srivatsan Madhavan ◽  
Prashant Singh ◽  
Srinath Ekkad

High-porosity metal foams are known for providing high heat transfer rates, as they provide a significant increase in wetted surface area as well as highly tortuous flow paths resulting in enhanced mixing. Further, jet impingement offers high convective cooling, particularly at the jet footprint areas on the target surface due to flow stagnation. In this study, high-porosity thin metal foams were subjected to array jet impingement, for a special crossflow scheme. High porosity (92.65%), high pore density (40 pores per inch (ppi)), and thin foams (3 mm) have been used. In order to reduce the pumping power requirements imposed by full metal foam design, two striped metal foam configurations were also investigated. For that, the jets were arranged in 3 × 6 array (x/dj = 3.42, y/dj = 2), such that the crossflow is dominantly sideways. Steady-state heat transfer experiments have been conducted for varying jet-to-target plate distance z/dj = 0.75, 2, and 4 for Reynolds numbers ranging from 3000 to 12,000. The baseline case was jet impingement onto a smooth target surface. Enhancement in heat transfer due to impingement onto thin metal foams has been evaluated against the pumping power penalty. For the case of z/dj = 0.75 with the base surface fully covered with metal foam, an average heat transfer enhancement of 2.42 times was observed for a concomitant pressure drop penalty of 1.67 times over the flow range tested.


2020 ◽  
Author(s):  
Vivek Subramaniam Sambamurthy ◽  
Srivatsan Madhavan ◽  
Prashant Singh ◽  
Srinath V. Ekkad

Abstract An experimental investigation was carried out to study heat transfer and fluid flow in high porosity (93%) thin metal foams subjected to array jet impingement, under maximum and intermediate crossflow exit schemes. Separate effects of pore-density and jet-to-target spacing (z/d) have been studied. To this end, for a fixed pore-density of 40PPI foams, three different jet-to-target spacing (z/d=1, 2, 6) were investigated, and for a fixed z/d of 6, three different pore-density of 5, 20 and 40PPI were investigated. The jet diameter-based Reynolds number was varied between 3,000-12,000. Experiments were carried out to characterize local flow distribution and Nusselt numbers for different jet impingement configurations. The heat transfer results were obtained through steady-state experiments. Local flow measurements show that, as z/d decreases, the mass flux distributions are increasingly skewed with higher mass flow rates near the exits. Heat transfer enhancement has been calculated and the optimum foam configuration has been deduced from the pumping power. It was observed that Nusselt number increases with increasing pore density at a fixed z/d and reduces with increase in z/d at constant pore density. Intermediate crossflow had higher heat transfer than maximum crossflow with significantly lower pumping power. Under a constant pumping power condition, z/d = 2, 40ppi foam provided an average enhancement of 35% over the corresponding baseline configuration for intermediate crossflow scheme and was found to be the most optimum configuration.


Author(s):  
Srivatsan Madhavan ◽  
Vivek Subramaniam Sambamurthy ◽  
Prashant Singh ◽  
Srinath Ekkad

Abstract Array jet impingement heat transfer onto thin metal foams of different pore densities has been experimentally investigated in the current study. Aluminum foams with high porosity (93%) and different pore densities of 5, 20 and 40 ppi are subjected to array jet impingement under an intermediate crossflow exit scheme. The jets are arranged such that the streamwise jet-to-jet spacing is x/dj = 8 and spanwise jet-to-jet spacing is y/dj = 4. Jet to target plate spacing was maintained at z/dj = 6 where ‘z’ is the distance between the jet plate and the target surface on which metal foams were installed. A steady state heat transfer technique has been used to obtain local heat transfer coefficients along the streamwise direction. It is observed that heat transfer enhancement levels increase as pore density increases. An enhancement of 50–100% over the baseline case of impingement onto smooth surface is obtained over the flow range tested (3000 < Redj < 12000). At a constant pumping power of 40 W, an enhancement of 26–33% is obtained for the different pore densities tested.


Author(s):  
Prashant Singh ◽  
Mingyang Zhang ◽  
Jaideep Pandit ◽  
Roop L. Mahajan

Metal foams enhance heat transfer rates by providing significant increase in wetted surface area and by thermal dispersion caused by flow mixing induced by the tortuous flow paths. Further, jet impingement is also an effective method of enhancing local convective heat transfer rates. In the present study, we have carried out an experimental investigation to study the combined effect of the two thermal performance-enhancement mechanisms. To this end, we conducted a set of experiments to determine convective heat transfer rates by impinging an array of jets onto thin metal foams attached on a uniformly heated smooth aluminum plate simulating a high heat-dissipating chip. The metal foams used were high porosity aluminum foams (ε∼0.94–0.96) with pore densities of 5 ppi, 10 ppi and 20 ppi (ppi: pores per inch) with thicknesses of 19 mm, 12.7 mm and 6.35 mm, respectively. With the jet-to-foam distance (z/d) set to zero, we conducted experiments with values of jet-to-jet spacing (x/d = y/d) of 2, 3 and 5. The jet plate featured an array of 5 × 5 cylindrical jet-issuing nozzles. The normalized jet-to-jet distance was varied by changing the jet diameter and keeping the jet center-to-center distance constant. Steady state heat transfer and pressure drop experiments were carried out for Reynolds number (based on jet diameter) ranging from 2500 to 10000. We have found that array impingement on thin foams leads to a significant enhancement in heat transfer compared to normal impingement over smooth surfaces. The gain in heat transfer was greatest for the 20 ppi foam (∼2.3 to 2.8 times that for the plain surface smooth target). However, this enhancement came at a significant increase of about 2.85 times in the plenum static pressure. With the pressure drop penalty taken into consideration, the x/d = 3 jet plate for the 20 ppi foam and x/d = 2 jet plate for the 10 ppi foam were found to be the most efficient cooling designs amongst the 18 cooling designs investigated in the present study.


Author(s):  
Jayesh P ◽  
Mukkamala Y ◽  
Bibin John

Heat transfer enhancement, pumping power and weight minimization in enhanced heat exchangers has long been achieved by deploying tubes with internal surface modifications like microgrooves, ribs, fins, knurls, and dimples with and without tube inserts. This article presents a very extensive review of experimental and computational studies on heat transfer enhancement, which covers convectional and unconventional working fluids under different fluid flow conditions. Compound augmentation with tube surface modifications and inserts has yielded enhancements in the overall heat transfer coefficient of over 116% in the fully developed turbulent flow regime. Exotic fluids like nano-coolants deployed in spiral grooved mircofin tubes yielded 196% enhancement in tube side heat transfer rate for concentrations as low as 0.5% by volume, while the thermal efficiency index measuring the overall enhancement in relation to the pumping power was 75%. However, reviews that address the combined effect of unconventional fluids, surface modifications and tube inserts on the overall thermo-hydraulic performance of annular heat exchangers seem to be limited. Further, nano-coolants aren’t frequently used in the process industry. The goal of this study is to document and evaluate the impact of cost-effective and energy-saving passive enhancement techniques such as tube surface modifications, tube inserts, and annular enhancement techniques on annular heat exchangers used in the process industries with Newtonian and non-Newtonian fluids. This review should be useful to engineers, academics and medical professionals working with non-Newtonian fluids and enhanced heat exchangers.


Sign in / Sign up

Export Citation Format

Share Document