Effects of Materials on the Heat Transfer Coefficient During Condensation and Evaporation of R410A

2020 ◽  
Vol 143 (3) ◽  
Author(s):  
Weiyu Tang ◽  
Tariq Amin Khan ◽  
Boren Zheng ◽  
Lei Wang ◽  
Wei Li ◽  
...  

Abstract An experimental investigation was conducted to demonstrate the effects of materials on the heat transfer characteristics of R410A during evaporation and condensation inside two horizontal plain tubes with the same inner diameter of 6 mm, but with two different materials of aluminum and stainless steel. The variation of vapor quality for the test section was kept in the range of 0.2–0.9, while mass velocities were allowed to vary from 100 to 400 kg/m2/s1. First, a series of single-phase and repetitive experiments were conducted to verify the accuracy and reliability of the test rig. Results of the evaporation experiments show that the plain aluminum tube performs best for all tested mass velocities. Several different correlations were employed to predict the present data, and their predictive ability was compared and discussed. Results indicate that the Liu and Winterton correlation could accurately predict the present results except for low mass velocities. Roughness effects were accounted for employing a correction factor. The larger roughness of the stainless steel tube was supposed to make the stainless steel tube perform better if roughness effects were accounted for, so the better performance of the aluminum tube was mainly attributed to the material effects. The pool boiling heat transfer as predicted by the VDI model was compared with the experimental results, and more obvious material effects have been found for pool boiling conditions. The minor differences between the two tubes in this case may be explained by the nucleate boiling suppression and incomplete wetting. For the condensation experiments, little difference was found between the two tested tubes, which means that the material and roughness effects may have had little influence on the thermal performance during condensation.

1999 ◽  
Vol 121 (2) ◽  
pp. 365-375 ◽  
Author(s):  
R. J. Benjamin ◽  
A. R. Balakrishnan

A model for nucleate pool boiling heat transfer of binary mixtures has been proposed based on an additive mechanism. The contributing modes of heat transfer are (i) the heat transferred by microlayer evaporation, (ii) the heat transferred by transient conduction during the reformation of the thermal boundary layer, and (iii) the heat transferred by turbulent natural convection. The model takes into account the microroughness of the heating surface which has been defined quantitatively. The model compares satisfactorily with data obtained in the present study and in the literature. These data were obtained on a variety of heating surfaces such as a vertical platinum wire, a horizontal stainless steel tube and flat horizontal aluminium, and stainless steel surfaces (with various surface finishes) thereby demonstrating the validity of the model.


1962 ◽  
Vol 84 (4) ◽  
pp. 365-371 ◽  
Author(s):  
H. S. Swenson ◽  
J. R. Carver ◽  
G. Szoeke

In large, subcritical pressure, once-through power boilers heat is transferred to steam and water mixtures ranging in steam quality from zero per cent at the bottom of the furnace to 100 per cent at the top. In order to provide design information for this type of boiler, heat-transfer coefficients for forced convection film boiling were determined for water at 3000 psia flowing upward in a vertical stainless-steel tube, AISI Type 304, having an inside diameter of 0.408 inches and a heated length of 6 feet. Heat fluxes ranged between 90,000 and 180,000 Btu/hr-sq ft and were obtained by electrical resistance heating of the tube. The operation of the experimental equipment was controlled so that nucleate boiling, transition boiling, and stable film boiling occurred simultaneously in different zones of the tube. The film boiling data were correlated with a modified form of the equation Nu = a a(Re)m(Pr)n using steam properties evaluated at inside surface temperature. Results of a second series of heat-transfer tests with tubes having a helical rib on the inside surface showed that nucleate boiling could be maintained to much higher steam qualities with that type of tube than with a smooth-bore tube.


2014 ◽  
Vol 1081 ◽  
pp. 270-274
Author(s):  
Zui Xian Yu ◽  
Xue Sheng Wang ◽  
Qin Zhu Chen

A new preparation technique of carbon steel/stainless steel clad tube was introduced, and the contact surface was well combined. Meanwhile, with the using of tube heat exchanger, the experiment on the heat transfer performance of the clad tube was done. Comparing the 10/316 clad tube and the 316 stainless steel tube, the effects on the heat transfer performance of 316 stainless steel tube attached to carbon steel was evaluated. It is showed that overall heat transfer coefficient of 10/316 clad tubes is higher than that of stainless steel tube. The average heat transfer coefficient of 10/316 clad tubes is about 18.7%~34.4% higher than that of stainless steel tube. Experimental investigation indicates that, by brazing and cold drawing, the 10/316 clad tube was well combined and the thermal conductivity was better than that of stainless steel tube.


Author(s):  
Weiyu Tang ◽  
Boren Zheng ◽  
Wei Li

Abstract An Experimental investigation was conducted to demonstrate the effect of material on the heat transfer characteristics of R410A during evaporation inside two horizontal plain tubes with the same inner diameter of 6mm, and they are made of aluminum and stainless, respectively. The variation of vapor quality for test section were kept at 0.2–0.9, and mass velocities varied from 100 kg m−2s−1 to 400 kg m−2s−1. A series of single-phase and repetitive experiments was conducted to verify the accuracy and reliability of the test rig firstly. Various flow patterns including stratified, slug, and annular flow even dry-out may exist during the flow boiling experiments, while both ΔT-dependent and ΔT-independent flow are included for the test conditions of condensation. The results for evaporation have shown that the plain aluminum tube performs the best for all tested mass velocities. Several different correlations were employed to predict the present data and their predictive ability were compared. The results indicate that the Liu and Winterton can predict all the data points in an acceptable error band, and the slightly worse thermal performance of the stainless-steel tube may be attributed to the relatively low thermal conductivity. For condensation, little difference was found between two tested tubes, which means that the material and roughness may have little effect on the heat transfer performance during condensation.


Author(s):  
Sira Saisorn ◽  
Pochai Srithumkhant ◽  
Pakorn Wongpromma ◽  
Maturose Suchatawat ◽  
Somchai Wongwises

Two-phase flow of R-134a with high confinement number was experimentally carried out in this study. Flow boiling conditions for different orientations were controlled to take place in a stainless steel tube having a diameter of 0.5 mm. Based on a saturation pressure of 8 bar, a heat flux range of 2–26 kW/m2, and a mass flux range of 610–815 kg/m2s, a constant surface heat flux condition was controlled by applied DC power supply on the test section. The flow behaviors were described based on flow pattern and pressure drop data while heat transfer mechanisms were explained by using heat transfer coefficient data. In this work, nucleate boiling was observed, and the importance of the change in the flow direction was neglected, corresponding to the confinement number of around 1.7.


Author(s):  
Joohyun Lee ◽  
Roger D. Flynn ◽  
Kenneth E. Goodson ◽  
John K. Eaton

The convection performance of nanofluids in microchannels has received relatively little attention. This work reports convective heat transfer experiments of deionized water/Al2O3 nanofluids using 200μm hydraulic diameter MEMs fabricated microchannel structures and a stainless steel tube with 250μm inside diameter. The tube wall is heated electrically producing a constant heat flux boundary condition and an infrared camera is used to measure the outside tube wall temperature. A full numerical conjugate analysis of the apparatus is used to infer the fluid thermal conductivity from the temperature measurements. The effective thermal conductivity of nanofluids increased only by 4% for 4% volume concentration nanofluids in the MEMs fabricated microchannel and 5% for 3% volume concentration in the stainless steel tube under laminar flow conditions. The effective viscosity of the nanofluids increased 12% for 2% volume concentration. A dynamic light scattering system was used to measure the effective particle diameter and particle size distributions of nanoparticles with various pH values and surfactants. The measured mean diameter of Al2O3 nanoparticle is 170 nm, which is larger than the 40–50 nm nominal size.


Sign in / Sign up

Export Citation Format

Share Document