Conditioning of Leakage Flows in Gas Turbine Rotor-Stator Cavities

Author(s):  
Peter Darby ◽  
Alex Mesny ◽  
Giove De Cosmo ◽  
Mauro Carnevale ◽  
Gary Lock ◽  
...  

Abstract Ingress is the penetration of hot mainstream fluid into the cavity formed between the turbine disc (rotor) and its adjacent casing (stator). Gas turbine engine designers use rim seals fitted at the periphery of the discs and a superposed sealant flow - typically fed through the bore of the stator - is used to reduce, or in the limit prevent, ingress. Parasitic leakage enters the cavity through pathways created between mating interfaces of engine components. Owing to the aggressive thermal and centrifugal loading experienced during the turbine operating cycle, the degree of leakage and its effect on ingress are difficult to predict. This paper considers the potential for leakage flows to be conditioned in order to minimise their parasitic effect on disc cooling, and ultimately engine, performance. Measurements of static and total pressure, swirl and species concentration were used to assess the performance of a simple axial clearance rim-seal over a range of non-dimensional leakage flow-rates. A computational model was used to provide flow visualisation to support the interpretation of flow structures derived from the experiments. Data is presented to investigate the effects of swirling the leakage flow in accordance with, and counter to, the disc rotation. The injected momentum from the leakage created a toroidal vortex in the outer part of the cavity. Co-swirl was found to improve the sealing effectiveness by up to 15...abridged

Author(s):  
P. W. Darby ◽  
A. W. Mesny ◽  
G. De Cosmo ◽  
M. Carnevale ◽  
G. D. Lock ◽  
...  

Abstract Ingress is the penetration of hot mainstream fluid into the cavity formed between the turbine disc (rotor) and its adjacent casing (stator). Gas turbine engine designers use rim seals fitted at the periphery of the discs and a superposed sealant flow — typically fed through the bore of the stator — is used to reduce, or in the limit prevent, ingress. Parasitic leakage enters the cavity through pathways created between mating interfaces of engine components. Owing to the aggressive thermal and centrifugal loading experienced during the turbine operating cycle, the degree of leakage and its effect on ingress are difficult to predict. This paper considers the potential for leakage flows to be conditioned in order to minimise their parasitic effect on disc cooling, and ultimately engine, performance. Measurements of static and total pressure, swirl and species concentration were used to assess the performance of a simple axial clearance rim-seal over a range of non-dimensional leakage flow-rates. A computational model was used to provide flow visualisation to support the interpretation of flow structures derived from the experiments. Data is presented to investigate the effects of swirling the leakage flow in accordance with, and counter to, the disc rotation. The injected momentum from the leakage created a toroidal vortex in the outer part of the cavity. Co-swirl was found to improve the sealing effectiveness by up to 15% compared to the axially-introduced baseline and counter-swirled configurations. Varying the momentum of the leakage flow was considered by passing consistent mass-flows through a range of leakage outlet areas. Increasing the momentum was seen to increase the influence of the toroidal vortex on the flow structure in the cavity, which in turn influenced the sealing effectiveness.


1992 ◽  
Vol 114 (2) ◽  
pp. 174-179 ◽  
Author(s):  
J. D. MacLeod ◽  
V. Taylor ◽  
J. C. G. Laflamme

Under the sponsorship of the Canadian Department of National Defence, the Engine Laboratory of the National Research Council of Canada (NRCC) has established a program for the evaluation of component deterioration on gas turbine engine performance. The effect is aimed at investigating the effects of typical in-service faults on the performance characteristics of each individual engine component. The objective of the program is the development of a generalized fault library, which will be used with fault identification techniques in the field, to reduce unscheduled maintenance. To evaluate the effects of implanted faults on the performance of a single spool engine, such as an Allison T56 turboprop engine, a series of faulted parts were installed. For this paper the following faults were analyzed: (a) first-stage turbine nozzle erosion damage; (b) first-stage turbine rotor blade untwist; (c) compressor seal wear; (d) first and second-stage compressor blade tip clearance increase. This paper describes the project objectives, the experimental installation, and the results of the fault implantation on engine performance. Discussed are performance variations on both engine and component characteristics. As the performance changes were significant, a rigorous measurement uncertainty analysis is included.


Author(s):  
J. D. MacLeod ◽  
V. Taylor ◽  
J. C. G. Laflamme

Under the sponsorship of the Canadian Department of National Defence, the Engine Laboratory of the National Research Council of Canada (NRCC) has established a program for the evaluation of component deterioration on gas turbine engine performance. The effort is aimed at investigating the effects of typical in-service faults on the performance characteristics of each individual engine component. The objective of the program is the development of a generalized fault library which will be used with fault identification techniques in the field, to reduce unscheduled maintenance. To evaluate the effects of implanted faults on the performance of a single spool engine, such as an Allison T56 turboprop engine, a series of faulted parts were installed. For this paper the following faults were analyzed: a) 1st stage turbine nozzle erosion damage, b) 1st stage turbine rotor blade untwist, c) compressor seal wear, d) 1st and 2nd stage compressor blade tip clearance increase. This paper describes the project objectives, the experimental installation, and the results of the fault implantation on engine performance. Discussed are performance variations on both engine and component characteristics. As the performance changes were significant, a rigorous measurement uncertainty analysis is included.


Author(s):  
P. A. Phillips ◽  
Peter Spear

After briefly summarizing worldwide automotive gas turbine activity, the paper analyses the power plant requirements of a wide range of vehicle applications in order to formulate the design criteria for acceptable vehicle gas turbines. Ample data are available on the thermodynamic merits of various gas turbine cycles; however, the low cost of its piston engine competitor tends to eliminate all but the simplest cycles from vehicle gas turbine considerations. In order to improve the part load fuel economy, some complexity is inevitable, but this is limited to the addition of a glass ceramic regenerator in the 150 b.h.p. engine which is described in some detail. The alternative further complications necessary to achieve satisfactory vehicle response at various power/weight ratios are examined. Further improvement in engine performance will come by increasing the maximum cycle temperature. This can be achieved at lower cost by the extension of the use of ceramics. The paper is intended to stimulate the design application of the gas turbine engine.


Author(s):  
Peter D. Smout ◽  
Steven C. Cook

The determination of gas turbine engine performance relies heavily on intrusive rakes of pilot tubes and thermocouples for gas path pressure and temperature measurement. For over forty years, Kiel-shrouds mounted on the rake body leading edge have been used as the industry standard to de-sensitise the instrument to variations in flow incidence and velocity. This results in a complex rake design which is expensive to manufacture, susceptible to mechanical damage, and difficult to repair. This paper describes an exercise aimed at radically reducing rake manufacture and repair costs. A novel ’common cavity rake’ (CCR) design is presented where the pressure and/or temperature sensors are housed in a single slot let into the rake leading edge. Aerodynamic calibration data is included to show that the performance of the CCR design under uniform flow conditions and in an imposed total pressure gradient is equivalent to that of a conventional Kiel-shrouded rake.


Author(s):  
Daniel Frączek ◽  
Włodzimierz Wróblewski ◽  
Krzysztof Bochon

The aircraft engine operates in various conditions. In consequence, the design of seals must take account of the seal clearance changes and the risk of rubbing. A small radial clearance of the rotor tip seal leads to the honeycomb rubbing in take-off conditions, and the leakage flow may increase in cruise conditions. The aim of this study is to compare two honeycomb seal configurations of the low-pressure gas turbine rotor. In the first configuration, the clearance is small and rubbing occurs. In the second,—the fins of the seal are shorter to eliminate rubbing. It is assumed that the real clearance in both configurations is the same. A study of the honeycomb geometrical model is performed to reduce the computational effort. The problem is investigated numerically using the RANS equations and the two-equation k–ω SST turbulence model. The honeycomb full structure is taken into consideration to show details of the fluid flow. Main parameters of the clearance and leakage flows are compared and discussed for the rotor different axial positions. An assessment of the leakage flow through the seal variants could support the design process.


Author(s):  
V. Pachidis ◽  
P. Pilidis ◽  
I. Li

The performance analysis of modern gas turbine engine systems has led industry to the development of sophisticated gas turbine performance simulation tools and the utilization of skilled operators who must possess the ability to balance environmental, performance and economic requirements. Academic institutions, in their training of potential gas turbine performance engineers have to be able to meet these new challenges, at least at a postgraduate level. This paper describes in detail the “Gas Turbine Performance Simulation” module of the “Thermal Power” MSc course at Cranfield University in the UK, and particularly its practical content. This covers a laboratory test of a small Auxiliary Power Unit (APU) gas turbine engine, the simulation of the ‘clean’ engine performance using a sophisticated gas turbine performance simulation tool, as well as the simulation of the degraded performance of the engine. Through this exercise students are expected to gain a basic understanding of compressor and turbine operation, gain experience in gas turbine engine testing and test data collection and assessment, develop a clear, analytical approach to gas turbine performance simulation issues, improve their technical communication skills and finally gain experience in writing a proper technical report.


Sign in / Sign up

Export Citation Format

Share Document