The automotive gas turbine’s (AGT) significant potential payoffs in fuel economy, emissions, and alternate fuels usage continue to motivate development activities worldwide. The U.S. Department of Energy-sponsored, NASA-managed Advanced Turbine Technology Applications Project (ATTAP) focuses on developing critical AGT structural ceramic component technologies. The area of greatest challenge is that of cost-effective, near-net-shape, high-volume, high-yield manufacturing processes. Process physics modeling and Taguchi analyses are affording substantial progress, and new processes are being explored. Laboratory characterization is building a shared materials data base among Allison, Garrett, Government labs, and ceramic manufacturers. General Motors (GM) has logged over 700 test hours with ceramic components in hot gasifier rigs during ATTAP. A key ATTAP milestone was addressed by successfully demonstrating full goal temperature and speed (2500°F rotor inlet at 100% shaft speed) with ceramic components.
Fast-fracture ceramic component design tools are well correlated. Although time-dependent data and mechanistic models exist, a validated design system for such phenomena does not, and is a pressing need. Damage tolerance and impact resistance have been substantially addressed through tailored component designs, tougher monolithic ceramics, and increased ceramic strengths. Ceramic turbine rotors are now continuing to run after various substantial impacts, and after chipping damage. Ceramic-ceramic and ceramic-metal interfacing is being addressed by minimizing components’ joints, and by other DOE-sponsored work on joining models, processes, and materials.
The extruded regenerator disk is a continuing goal which requires both forming process and materials technology development. Controlling turbine tip clearances and tolerating tip rubs are key technologies. GM has demonstrated clearance control schemes, as well as rotor survivability to high speed/temperature tip rubs. Several noteworthy ceramic materials reflect the rapid progress over the past decade of monolithic ceramics, especially the Si3N4 family. GM forecasts achieving ATTAP engine cyclic durability goals.