Experimental Study on Film Cooling Effectiveness of Blade with Chevron Shaped Holes under Wake Influence

2021 ◽  
pp. 1-20
Author(s):  
Jichen Li ◽  
Hui Ren Zhu ◽  
Cun Liang Liu ◽  
Lin Ye ◽  
Zhou Daoen

Abstract Gas turbines have been widely used. With the continuous improvement of the performance of gas turbines, the turbine inlet temperature has greatly exceeded the heat resistance limit of the turbine blade material, so advanced cooling technology is required. The film cooling effectiveness distribution over the blade under the effect of wake was obtained by Pressure Sensitive Paint (PSP) technique. The test blade has 5 rows of chevron film holes on the pressure side, 3 rows of cylindrical film holes on the leading edge and 3 rows of chevron film holes on the suction side. The mainstream Reynolds number is 130,000 based on the blade chord length, and the mainstream turbulence intensity is 2.7%. The upstream wake was simulated by the spoken-wheel type wake generator. The film cooling effectiveness was measured at three wake Strouhal numbers (0, 0.12 and 0.36) and three mass flux ratios (MFR1, MFR2 and MFR3). The results show that the increase of mass flux ratio leads a decrease of the film cooling effectiveness on the suction surface. In the wake condition, the effect of mass flux ratio is weakened. Wake leads a marked decrease of the film cooling effectiveness over most blade surface except for the surface near leading edge on the pressure surface. In the high mass flux ratio condition, the effect of wake on the film cooling effectiveness is weakened on the suction surface and strengthened on the pressure surface.

Author(s):  
Ji-Chen Li ◽  
Hui-Ren Zhu ◽  
Da-Wei Chen ◽  
Dao-En Zhou

Abstract Gas turbines have been widely used. With the continuous improvement of the performance of gas turbines, the turbine inlet temperature has greatly exceeded the heat resistance limit of the turbine blade material, so advanced cooling technology is required. The film cooling effectiveness distribution over the blade under the effect of wake was obtained by Pressure Sensitive Paint (PSP) technique. The test blade has 5 rows of chevron film holes on the pressure side, 3 rows of cylindrical film holes on the leading edge and 3 rows of chevron film holes on the suction side. The mainstream Reynolds number is 130,000 based on the blade chord length, and the mainstream turbulence intensity is 2.7%. The upstream wake was simulated by the spoken-wheel type wake generator. The film cooling effectiveness was measured at three wake Strouhal numbers (0, 0.12 and 0.36) and three mass flux ratios (MFR1, MFR2 and MFR3). The results show that the increase of mass flux ratio leads a decrease of the film cooling effectiveness on the suction surface. In the wake condition, the effect of mass flux ratio is weakened. Wake leads a marked decrease of the film cooling effectiveness over most blade surface except for the surface near leading edge on the pressure surface. In the high mass flux ratio condition, the effect of wake on the film cooling effectiveness is weakened on the suction surface and strengthened on the pressure surface.


Author(s):  
Shuai-qi Zhang ◽  
Cun-liang Liu ◽  
Qi-ling Guo ◽  
Da-peng Liang ◽  
Fan Zhang

Abstract The film coverage of a turbine blade surface is determined by all the film cooling structures. The direct study of full coverage film cooling is relatively rare, especially for related research on turbine blades. In this paper, the pressure-sensitive paint (PSP) measurement technique is used to carry out experiments under different turbulence intensities and mass flux ratios, and the distribution of the film cooling effectiveness on the entire surface is studied in detail. In this study, a basic turbine blade and an improved turbine blade are investigated. The film cooling hole position distribution on the improved blade is the same as that on the basic blade, but the film cooling hole shape on the suction surface and the pressure surface is changed from cylindrical holes to laid-back fan-shaped holes. Both blades have 5 rows of cylindrical holes at the leading edge and 4 rows of film cooling holes on the suction surface and the pressure surface. The leading edge, suction surface, and pressure surface have their own coolant inlet cavities. This kind of design is not only close to the actual working conditions in a flow distribution but also conveniently eliminates the mutual interference caused by the uneven flow distribution between the pressure surface and the suction surface to facilitate the independent analysis of the pressure surface and the suction surface. In this paper, the film cooling effectiveness of two kinds of turbine blades under different turbulence intensities and mass flux ratios is studied. The results show that the average cooling effectiveness of the improved blade is much better than that of the basic blade. The laid-back fan-shaped hole rows improve the cooling effectiveness of the suction surface by 60% to 100% and 50% to 120% on the pressure surface. The increase in turbulence intensity will reduce the cooling effectiveness of the blade surface; however, the effect of the turbulence intensity becomes weaker with an increase in the mass flux ratio. Compared with the multiple rows of cylindrical holes, the cooling effectiveness of the laid-back fan-shaped holes is more affected by the turbulence intensity under the small mass flux ratio.


Author(s):  
Wenwu Zhou ◽  
Hui Hu

A novel Barchan-dune-assisted film cooling configuration was proposed and examined in present study. The effects of mass flux ratio, location, and height of Barchan dunes on film cooling effectiveness were investigated in great detail using the Pressure Sensitive Paint (PSP) and Particle Image Velocimetry (PIV) techniques. The PSP measurement results showed that the Barchan-dune-assisted film cooling configuration (H=0.5D, DB=−0.9D) can greatly enhance the film cooling effectiveness for flow from a cylindrical hole in relatively high mass flux ratio (M>0.85), which was explained by the PIV results in this study. Meanwhile the effects of Barchan dune location and height indicated that the film cooling performance of the Barchan-dune-assisted configuration is closely related to the height and location of the dune. It is wiser to choose Barchan dune of H=0.5D when it is placed upstream of the coolant hole, however the H=0.3D configuration is a better choice for placing the dune downstream.


Author(s):  
Sridharan Ramesh ◽  
Christopher LeBlanc ◽  
Diganta Narzary ◽  
Srinath Ekkad ◽  
Mary Anne Alvin

Film cooling performance of the antivortex (AV) hole has been well documented for a flat plate. The goal of this study is to evaluate the same over an airfoil at three different locations: leading edge suction and pressure surface and midchord suction surface. The airfoil is a scaled up first stage vane from GE E3 engine and is mounted on a low-speed linear cascade wind tunnel. Steady-state infrared (IR) technique was employed to measure the adiabatic film cooling effectiveness. The study has been divided into two parts: the initial part focuses on the performance of the antivortex tripod hole compared to the cylindrical (CY) hole on the leading edge. Effects of blowing ratio (BR) and density ratio (DR) on the performance of cooling holes are studied here. Results show that the tripod hole clearly provides higher film cooling effectiveness than the baseline cylindrical hole case with overall reduced coolant usage on the both pressure and suction sides of the airfoil. The second part of the study focuses on evaluating the performance on the midchord suction surface. While the hole designs studied in the first part were retained as baseline cases, two additional geometries were also tested. These include cylindrical and tripod holes with shaped (SH) exits. Film cooling effectiveness was found at four different blowing ratios. Results show that the tripod holes with and without shaped exits provide much higher film effectiveness than cylindrical and slightly higher effectiveness than shaped exit holes using 50% lesser cooling air while operating at the same blowing ratios. Effectiveness values up to 0.2–0.25 are seen 40-hole diameters downstream for the tripod hole configurations, thus providing cooling in the important trailing edge portion of the airfoil.


Author(s):  
Akhilesh P. Rallabandi ◽  
Shiou-Jiuan Li ◽  
Je-Chin Han

The effect of an unsteady stator wake (simulated by wake rods mounted on a spoke wheel wake generator) on the modeled rotor blade is studied using the Pressure Sensitive Paint (PSP) mass transfer analogy method. Emphasis of the current study is on the mid-span region of the blade. The flow is in the low Mach number (incompressible) regime. The suction (convex) side has simple angled cylindrical film-cooling holes; the pressure (concave) side has compound angled cylindrical film cooling holes. The blade also has radial shower-head leading edge film cooling holes. Strouhal numbers studied range from 0 to 0.36; the exit Reynolds Number based on the axial chord is 530,000. Blowing ratios range from 0.5 to 2.0 on the suction side; 0.5 to 4.0 on the pressure side. Density ratios studied range from 1.0 to 2.5, to simulate actual engine conditions. The convex suction surface experiences film-cooling jet lift-off at higher blowing ratios, resulting in low effectiveness values. The film coolant is found to reattach downstream on the concave pressure surface, increasing effectiveness at higher blowing ratios. Results show deterioration in film cooling effectiveness due to increased local turbulence caused by the unsteady wake, especially on the suction side. Results also show a monotonic increase in film-cooling effectiveness on increasing the coolant to mainstream density ratio.


Author(s):  
Kenichiro Takeishi ◽  
Sunao Aoki ◽  
Tomohiko Sato ◽  
Keizo Tsukagoshi

The film cooling effectiveness on a low-speed stationary cascade and the rotating blade has been measured by using a heat-mass transfer analogy. The film cooling effectiveness on the suction surface of the rotating blade fits well with that on the stationary blade, but a low level of effectiveness appears on the pressure surface of the rotating blade. In this paper, typical film cooling data will be presented and film cooling on a rotating blade is discussed.


Author(s):  
Ian S. Gartshore ◽  
Marthe Salcudean ◽  
Y. Barnea ◽  
K. Zhang ◽  
F. Aghadsi

Experiments have been conducted on a large wind tunnel model of the leading edge region of a turbine blade. The model had a semi-circular leading edge in which four rows of holes were symmetrically placed about the stagnation line, two at ±15° and two at ±44°. Air and alternatively CO2 were injected from the coolant holes after contamination with a known small percentage of propane. Using a flame ionization detector and the mass transfer analogy, the film cooling effectiveness was measured at various overall mass flow ratios and at various streamwise locations for each coolant type. The division of coolant flow rate from the two rows of holes was found to be more unequal for CO2 than for air, an effect which is predicted from a simple analysis of the coolant/free stream interaction and the hole discharge coefficient. This has practical implications for actual turbine operation since earlier cut-off of the coolant from the front row of holes, due to density differences, could have disastrous effects on the blade. This effect also further complicates any attempt to identify overall trends of coolant density on performance. It is not possible to conclude that air or CO2 coolant has a higher film cooling effectiveness, although, in general, air appears better close to the first row of holes, and CO2 better at some distance downstream of both rows. Based on the measurements, the effects of mass flow ratio, momentum flux ratio, relative hole placement in each row, and spanwise versus streamwise injection are discussed in the paper.


2021 ◽  
Author(s):  
Hai Wang ◽  
Chun-hua Wang ◽  
Xing-dan Zhu ◽  
Jian Pu ◽  
Hai-ying Lu ◽  
...  

Abstract Uncertainty due to operating conditions in gas turbines can have a significant impact on film cooling performance, or even the life of hot-section components. In this study, uncertainty quantification technique is applied to investigate the influences of inlet flow parameters on film cooling of fan-shaped holes on a stator vane under realistic engine conditions. The input parameters of uncertainty models include mainstream pressure, mainstream temperature, coolant pressure and coolant temperature, and it is assumed that these parameters conform to normal distributions. Surrogate model for film cooling is established by radial basis function neural network, and the statistical characteristics of outputs are determined by Monte Carlo simulation. The quantitative analysis results show that, on pressure surface, a maximum value of 61.6% uncertainty degree of laterally averaged adiabatic cooling effectiveness (ηad,lat) locates at about 4.0 diameters of hole downstream of the coolant exit; however, the maximum uncertainty degree of ηad,lat is only 4.5% on suction surface. Furthermore, the probability density function of area-averaged cooling effectiveness is of highly left-skewed distribution on pressure surface. By sensitivity analysis, the variation of mainstream pressure has the most pronounced effect on film cooling, while the effect of mainstream temperature is unobvious.


Author(s):  
Zhan Wang ◽  
Jian-Jun Liu ◽  
Bai-tao An ◽  
Chao Zhang

The effects of axial row-spacing for double jet film-cooling (DJFC) with compound angle on the cooling characteristics under different blowing ratios were investigated numerically. First, the flow fields and cooling effectiveness of DJFC on flat plate with different axial row-spacing were calculated. Film-cooling with fan-shaped or cylindrical holes was also calculated for the comparison. The results indicate that a larger axial row-spacing is helpful to form the anti-kidney vortex and to improve the cooling effectiveness. The DJFC was then applied to the suction and pressure surface of a real turbine inlet guide vane. Comparisons of film-cooling effectiveness with the cylindrical and fan-shaped holes were also conducted. The results for the guide vane show that on the suction surface the DJFC with a larger axial row-spacing leads to better film coverage and better film-cooling effectiveness than the cylindrical or fan-shaped holes. On the pressure surface, however, the film-cooling with fan-shaped holes is superior to the others.


Author(s):  
Fan Zhang ◽  
Cunliang Liu ◽  
Shuaiqi Zhang ◽  
Lin Ye ◽  
Bingran Li

Abstract To study the film cooling performance of impingement-effusion structures, it is important to study their adiabatic film cooling effectiveness. To improve the adiabatic film cooling effectiveness on a vane, some rows of cylindrical effusion holes are changed into fan-shaped holes. This experiment measured the adiabatic film cooling effectiveness of the double-walled system on the suction surface via the pressure-sensitive paint (PSP) technique. The film cooling effectiveness obtained by the PSP technique is coupled with the transient liquid crystal (TLC) technique to determine the heat transfer coefficient. This combination of techniques reduces the time required for the experiment and improves the efficiency of the experiment. The heat transfer coefficient ratio is used to evaluate the level of heating transfer. The net heat flux reduction (NHFR) is used to quantify the net benefit of film cooling. Two experimental vanes’ (A and B) film holes are both arranged in 6 rows of holes. There are 15 holes in each row. Only the positions of the fan-shaped holes are different. The experimental conditions include the mainstream Reynolds number (Re = 151,000) based on the chord length and inlet velocity, the turbulence intensities (Tu = 0.77%, 16.9%), and the mass flux ratios (ṁc/ṁg = 0.4%, 0.8%, 1.6%). The findings show that when the mass flux ratio increases to a point, the film cooling effectiveness does not improve. Increasing the turbulence intensity leads to a decrease in the film cooling effectiveness except for the region after Row 6 on Vane B. Using the coupling of PSP and TLC to determine the heat transfer coefficient can yield credible results. The turbulence intensity and the arrangement of the film holes have obvious effects on the distribution of the heat transfer coefficient ratio. The effects of turbulence intensity, mass flux ratio and hole arrangement on NHFR were studied.


Sign in / Sign up

Export Citation Format

Share Document