Uncertainty Analysis of Film Cooling of Fan-Shaped Holes on a Stator Vane Under Realistic Inlet Conditions

2021 ◽  
Author(s):  
Hai Wang ◽  
Chun-hua Wang ◽  
Xing-dan Zhu ◽  
Jian Pu ◽  
Hai-ying Lu ◽  
...  

Abstract Uncertainty due to operating conditions in gas turbines can have a significant impact on film cooling performance, or even the life of hot-section components. In this study, uncertainty quantification technique is applied to investigate the influences of inlet flow parameters on film cooling of fan-shaped holes on a stator vane under realistic engine conditions. The input parameters of uncertainty models include mainstream pressure, mainstream temperature, coolant pressure and coolant temperature, and it is assumed that these parameters conform to normal distributions. Surrogate model for film cooling is established by radial basis function neural network, and the statistical characteristics of outputs are determined by Monte Carlo simulation. The quantitative analysis results show that, on pressure surface, a maximum value of 61.6% uncertainty degree of laterally averaged adiabatic cooling effectiveness (ηad,lat) locates at about 4.0 diameters of hole downstream of the coolant exit; however, the maximum uncertainty degree of ηad,lat is only 4.5% on suction surface. Furthermore, the probability density function of area-averaged cooling effectiveness is of highly left-skewed distribution on pressure surface. By sensitivity analysis, the variation of mainstream pressure has the most pronounced effect on film cooling, while the effect of mainstream temperature is unobvious.

2021 ◽  
pp. 1-20
Author(s):  
Jichen Li ◽  
Hui Ren Zhu ◽  
Cun Liang Liu ◽  
Lin Ye ◽  
Zhou Daoen

Abstract Gas turbines have been widely used. With the continuous improvement of the performance of gas turbines, the turbine inlet temperature has greatly exceeded the heat resistance limit of the turbine blade material, so advanced cooling technology is required. The film cooling effectiveness distribution over the blade under the effect of wake was obtained by Pressure Sensitive Paint (PSP) technique. The test blade has 5 rows of chevron film holes on the pressure side, 3 rows of cylindrical film holes on the leading edge and 3 rows of chevron film holes on the suction side. The mainstream Reynolds number is 130,000 based on the blade chord length, and the mainstream turbulence intensity is 2.7%. The upstream wake was simulated by the spoken-wheel type wake generator. The film cooling effectiveness was measured at three wake Strouhal numbers (0, 0.12 and 0.36) and three mass flux ratios (MFR1, MFR2 and MFR3). The results show that the increase of mass flux ratio leads a decrease of the film cooling effectiveness on the suction surface. In the wake condition, the effect of mass flux ratio is weakened. Wake leads a marked decrease of the film cooling effectiveness over most blade surface except for the surface near leading edge on the pressure surface. In the high mass flux ratio condition, the effect of wake on the film cooling effectiveness is weakened on the suction surface and strengthened on the pressure surface.


Author(s):  
Ji-Chen Li ◽  
Hui-Ren Zhu ◽  
Da-Wei Chen ◽  
Dao-En Zhou

Abstract Gas turbines have been widely used. With the continuous improvement of the performance of gas turbines, the turbine inlet temperature has greatly exceeded the heat resistance limit of the turbine blade material, so advanced cooling technology is required. The film cooling effectiveness distribution over the blade under the effect of wake was obtained by Pressure Sensitive Paint (PSP) technique. The test blade has 5 rows of chevron film holes on the pressure side, 3 rows of cylindrical film holes on the leading edge and 3 rows of chevron film holes on the suction side. The mainstream Reynolds number is 130,000 based on the blade chord length, and the mainstream turbulence intensity is 2.7%. The upstream wake was simulated by the spoken-wheel type wake generator. The film cooling effectiveness was measured at three wake Strouhal numbers (0, 0.12 and 0.36) and three mass flux ratios (MFR1, MFR2 and MFR3). The results show that the increase of mass flux ratio leads a decrease of the film cooling effectiveness on the suction surface. In the wake condition, the effect of mass flux ratio is weakened. Wake leads a marked decrease of the film cooling effectiveness over most blade surface except for the surface near leading edge on the pressure surface. In the high mass flux ratio condition, the effect of wake on the film cooling effectiveness is weakened on the suction surface and strengthened on the pressure surface.


Author(s):  
Karsten Kusterer ◽  
Dieter Bohn ◽  
Takao Sugimoto ◽  
Ryozo Tanaka

Film-cooling in gas turbines leads to aerodynamic mixing losses and reduced temperatures of the gas flow. Improvements of the gas turbine thermal efficiency can be achieved by reducing the cooling fluid amount and by establishing a more equal distribution of the cooling fluid along the surface. It is well known that vortex systems in the cooling jets are the origin of reduced film-cooling effectiveness. For the streamwise ejection case, kidney-vortices result in a lift-off of the cooling jets; for the lateral ejection case, usually only one dominating vortex remains, leading to hot gas flow underneath the jet from one side. Based on the results of numerical analyses, a new cooling technology has been introduced by the authors, which reaches high film-cooling effectiveness as a result of a well-designed cooling hole arrangement for interaction of two neighbouring cooling jets (Double-jet Film-cooling DJFC). The results show that configurations exist, where an improved film-cooling effectiveness can be reached because an anti-kidney vortex pair is established in the double-jet. The paper aims on following major contributions: • to introduce the Double-jet Film-cooling (DJFC) as an alternative film-cooling technology to conventional film-cooling design. • to explain the major phenomena, which lead to the improvement of the film-cooling effectiveness by application of the DJFC. • to prove basic applicability of the DJFC to a realistic blade cooling configuration and present first test results under machine operating conditions.


Author(s):  
Kenichiro Takeishi ◽  
Sunao Aoki ◽  
Tomohiko Sato ◽  
Keizo Tsukagoshi

The film cooling effectiveness on a low-speed stationary cascade and the rotating blade has been measured by using a heat-mass transfer analogy. The film cooling effectiveness on the suction surface of the rotating blade fits well with that on the stationary blade, but a low level of effectiveness appears on the pressure surface of the rotating blade. In this paper, typical film cooling data will be presented and film cooling on a rotating blade is discussed.


Author(s):  
Zhan Wang ◽  
Jian-Jun Liu ◽  
Bai-tao An ◽  
Chao Zhang

The effects of axial row-spacing for double jet film-cooling (DJFC) with compound angle on the cooling characteristics under different blowing ratios were investigated numerically. First, the flow fields and cooling effectiveness of DJFC on flat plate with different axial row-spacing were calculated. Film-cooling with fan-shaped or cylindrical holes was also calculated for the comparison. The results indicate that a larger axial row-spacing is helpful to form the anti-kidney vortex and to improve the cooling effectiveness. The DJFC was then applied to the suction and pressure surface of a real turbine inlet guide vane. Comparisons of film-cooling effectiveness with the cylindrical and fan-shaped holes were also conducted. The results for the guide vane show that on the suction surface the DJFC with a larger axial row-spacing leads to better film coverage and better film-cooling effectiveness than the cylindrical or fan-shaped holes. On the pressure surface, however, the film-cooling with fan-shaped holes is superior to the others.


1992 ◽  
Vol 114 (4) ◽  
pp. 828-834 ◽  
Author(s):  
K. Takeishi ◽  
S. Aoki ◽  
T. Sato ◽  
K. Tsukagoshi

The film cooling effectiveness on a low-speed stationary cascade and the rotating blade has been measured by using a heat-mass transfer analogy. The film cooling effectiveness on the suction surface of the rotating blade fits well with that on the stationary blade, but a low level of effectiveness appears on the pressure surface of the rotating blade. In this paper, typical film cooling data will be presented and film cooling on a rotating blade is discussed.


Author(s):  
Shiou-Jiuan Li ◽  
Akhilesh P. Rallabandi ◽  
Je-Chin Han

Detailed film cooling effectiveness distributions along a modeled turbine rotor blade under combined effects of upstream trailing edge unsteady wake with coolant ejection are presented using the pressure sensitive paint (PSP) mass transfer analogy method. The experiment is conducted in a low speed wind tunnel facility with a five blade linear cascade. The exit Reynolds number based on the axial chord is 370,000. Unsteady wakes and trailing edge coolant jets are produced by a spoked wheel-type wake generator with hollow rods equipped with several coolant ejections from holes. The coolant-to-mainstream density ratios for both blade and trailing edge coolant ejection range from 1.5 to 2.0 for simulating realistic engine conditions. Blade blowing ratios studied are 0.5 and 1.0 on Suction surface and 1.0 and 2.0 on Pressure surface. Trailing edge jet blowing ratio and Strouhal number are 1.0 and 0.12, respectively. Results show the unsteady wake reduces overall film cooling effectiveness. However, the unsteady wake with trailing edge coolant ejection enhances overall effectiveness. Results also show that the overall filming cooling effectiveness increases by using heavier coolant for trailing edge ejection as well as for blade surface film cooling.


Author(s):  
Shuai-qi Zhang ◽  
Cun-liang Liu ◽  
Qi-ling Guo ◽  
Da-peng Liang ◽  
Fan Zhang

Abstract The film coverage of a turbine blade surface is determined by all the film cooling structures. The direct study of full coverage film cooling is relatively rare, especially for related research on turbine blades. In this paper, the pressure-sensitive paint (PSP) measurement technique is used to carry out experiments under different turbulence intensities and mass flux ratios, and the distribution of the film cooling effectiveness on the entire surface is studied in detail. In this study, a basic turbine blade and an improved turbine blade are investigated. The film cooling hole position distribution on the improved blade is the same as that on the basic blade, but the film cooling hole shape on the suction surface and the pressure surface is changed from cylindrical holes to laid-back fan-shaped holes. Both blades have 5 rows of cylindrical holes at the leading edge and 4 rows of film cooling holes on the suction surface and the pressure surface. The leading edge, suction surface, and pressure surface have their own coolant inlet cavities. This kind of design is not only close to the actual working conditions in a flow distribution but also conveniently eliminates the mutual interference caused by the uneven flow distribution between the pressure surface and the suction surface to facilitate the independent analysis of the pressure surface and the suction surface. In this paper, the film cooling effectiveness of two kinds of turbine blades under different turbulence intensities and mass flux ratios is studied. The results show that the average cooling effectiveness of the improved blade is much better than that of the basic blade. The laid-back fan-shaped hole rows improve the cooling effectiveness of the suction surface by 60% to 100% and 50% to 120% on the pressure surface. The increase in turbulence intensity will reduce the cooling effectiveness of the blade surface; however, the effect of the turbulence intensity becomes weaker with an increase in the mass flux ratio. Compared with the multiple rows of cylindrical holes, the cooling effectiveness of the laid-back fan-shaped holes is more affected by the turbulence intensity under the small mass flux ratio.


Aerospace ◽  
2019 ◽  
Vol 6 (4) ◽  
pp. 46 ◽  
Author(s):  
Wei Shi ◽  
Pingting Chen ◽  
Xueying Li ◽  
Jing Ren ◽  
Hongde Jiang

The film cooling holes in the blade of modern gas turbines have commonly been manufactured by laser drilling, Electric Discharge Machining (EDM), and Additive Manufacturing (AM) in recent years. These manufacturing processes often result in small geometric deviations, such as conical angles, filleted edges, and diameter deviations of the hole, which can lead to deviations on the distribution of adiabatic cooling effectiveness (η) values, the value of the discharge coefficient (Cd), and the characteristic of the in-hole flow field. The current study employed flat plate fan-shaped film cooling holes with length-to-diameter values (L/D) equal to 3.5 and six to investigate the effects of these manufacturing deviations on the distribution of η values, the value of Cd, and the characteristic of in-hole flow field. An Uncertainty Quantification (UQ) analysis using the Polynomial Chaos Expansion (PCE) model was carried out to quantify the uncertainty in the values of η and Cd. The statistical characteristics (mean values, standard deviation (Std) values, and Probability Density Function (PDF) values) of η and Cd were also calculated. The results show that conical angle deviations exert no visible changes on the value of η. However, the Cd value decreases by 6.2% when the conical angle changes from 0–0.5°. The area averaged adiabatic cooling effectiveness ( η = ) decreases by 3.4%, while the Cd increases by 15.2% with the filleted edge deviation existing alone. However, the deviation value of η = is 7.6%, and that of Cd is 25.7% with the filleted edge deviation and the diameter deviation existing.


Author(s):  
Sridharan Ramesh ◽  
Christopher LeBlanc ◽  
Diganta Narzary ◽  
Srinath Ekkad ◽  
Mary Anne Alvin

Film cooling performance of the antivortex (AV) hole has been well documented for a flat plate. The goal of this study is to evaluate the same over an airfoil at three different locations: leading edge suction and pressure surface and midchord suction surface. The airfoil is a scaled up first stage vane from GE E3 engine and is mounted on a low-speed linear cascade wind tunnel. Steady-state infrared (IR) technique was employed to measure the adiabatic film cooling effectiveness. The study has been divided into two parts: the initial part focuses on the performance of the antivortex tripod hole compared to the cylindrical (CY) hole on the leading edge. Effects of blowing ratio (BR) and density ratio (DR) on the performance of cooling holes are studied here. Results show that the tripod hole clearly provides higher film cooling effectiveness than the baseline cylindrical hole case with overall reduced coolant usage on the both pressure and suction sides of the airfoil. The second part of the study focuses on evaluating the performance on the midchord suction surface. While the hole designs studied in the first part were retained as baseline cases, two additional geometries were also tested. These include cylindrical and tripod holes with shaped (SH) exits. Film cooling effectiveness was found at four different blowing ratios. Results show that the tripod holes with and without shaped exits provide much higher film effectiveness than cylindrical and slightly higher effectiveness than shaped exit holes using 50% lesser cooling air while operating at the same blowing ratios. Effectiveness values up to 0.2–0.25 are seen 40-hole diameters downstream for the tripod hole configurations, thus providing cooling in the important trailing edge portion of the airfoil.


Sign in / Sign up

Export Citation Format

Share Document