The development of a highly durable Fe-N-C electrocatalyst with favorable CNT structures for the oxygen reduction in PEMFCs

Author(s):  
Shuiyun Shen ◽  
Ziwen Ren ◽  
Silei Xiang ◽  
Shiqu Chen ◽  
Zehao Tan ◽  
...  

Abstract Proton exchange membrane fuel cell (PEMFC) is a crucial route for energy saving, emission reduction and the development of new energy vehicles because of its high power density, high energy density as well as the low operating temperature which corresponds to fast starting and power matching. However, the rare and expensive Pt resource greatly hinders the mass production of fuel cell, and the development of highly active and durable non-precious metal catalysts toward the oxygen reduction reaction (ORR) in the cathode is considered to be the ultimate solution. In this article, a highly active and durable Fe-N-C catalyst was facilely derived from metal organic framework materials (MOFs), and a favorable structure of carbon nanotubes (CNTs) were formed, which accounts for a desired good durability. The as-optimized catalyst has a half-wave potential of 0.84V for the ORR, which is comparable to that of commercial Pt/C. More attractively, it has good stabilities both in rotating disk electrode and single cell tests, which provides a large practical application potential in the replacement of Pt catalyst as the ORR electrocatalyst in fuel cells.

2021 ◽  
Vol 875 ◽  
pp. 193-199
Author(s):  
Ahmad Shahbaz ◽  
Ali Afaf ◽  
Nawaz Tahir ◽  
Ullah Abid ◽  
Saher Saim

A highly active Platinum Group Metal (PGM) and non-PGM electrocatalysts with thermally extruded nanotubes have been prepared for Proton Exchange Membrane (PEM) fuel cell by sintering Nickel zeolitic imidazole framework (Ni-ZIF). Preeminent electro-catalytic activities have been observed through single fuel cell tests and rotating disk electrode (RDE). This study involves the comparison of Oxygen Reduction Reaction (ORR) activities and fuel cell (FC) test station performance of two catalyst Nickel and Platinum mixed Nickel nanotubes (Ni NT, Ni/Pt NT) respectively. The acidic cells with corresponding Ni and Ni/Pt catalysts delivers peak power densities of 325 mWcm-2 and 455 mWcm-2 at 75 °C inside fuel cell. Our results indicate that, the synthesized Nickel nanotubes has profound effect on catalytic performance of both PGM and non-PGM electro catalysts.


2000 ◽  
Author(s):  
Olivier Savin ◽  
Dacong Weng ◽  
Tim Rehg

Abstract Thanks to recent considerable progress in proton exchange membrane (PEM) technology, fuel cells and electrolyzers are on the verge of widespread commercialization. When a fuel cell and an electrolyzer are combined, a regenerative fuel cell (RFC) system is formed. By using an auxiliary power supply, such as solar power, for recharging, an RFC provides a complete power system for niche markets such as low-earth-orbit (LEO) satellites. The thermodynamics of RFC systems are presented, and design tradeoffs are investigated: a unitized system, where the fuel cell and the electrolyzer are combined into a single electrochemical device, is compared to a discrete system, where the fuel cell and the electrolyzer are discrete components. The analyses show that the RFC is well suited for LEO space applications, due to an appropriate charge/discharge cycle, and represents a high-energy-density, high-efficiency power solution.


Author(s):  
B. Banazwski ◽  
R. K. Shah

Batteries have not kept pace with the advancing technology that they power, but they are used in everything from cell phones, laptop computers, and toys to consumer electronics. Compared to the devices that they power, batteries are relatively heavy, expensive per unit power they produce, last a relatively short time and recharging them takes hours. The solution to this less than desired means of a power source is fuel cells. Three fuel cells, also referred to as air breathers, considered are proton exchange membrane fuel cell (PEMFC), direct methanol fuel cells (DMFC), and direct formic acid fuel cells (DFAFC). We will discuss these fuel cells for micro and portable applications within the power range of 0.5 to 20 W for potential replacement of batteries. The reason for developing such fuel cells is to harness the power stored in the high energy density fuels, which provides more power and longer run times for the same packaging volume as batteries. The advantages of each type of fuel cell over batteries, their unique characteristics, technical drawbacks, current and future consumer products, and commercial issues will be outlined in this paper. A growing mobile society and consumer demands will drive the development of fuel cell technology forward as batteries reach their limit.


Author(s):  
Lei Du ◽  
Gaixia Zhang ◽  
Shuhui Sun

AbstractProton exchange membrane (PEM) fuel cells have gained increasing interest from academia and industry, due to its remarkable advantages including high efficiency, high energy density, high power density, and fast refueling, also because of the urgent demand for clean and renewable energy. One of the biggest challenges for PEM fuel cell technology is the high cost, attributed to the use of precious platinum group metals (PGM), e.g., Pt, particularly at cathodes where sluggish oxygen reduction reaction takes place. Two primary ways have been paved to address this cost challenge: one named low-loading PGM-based catalysts and another one is non-precious metal-based or PGM-free catalysts. Particularly for the PGM-free catalysts, tremendous efforts have been made to improve the performance and durability—milestones have been achieved in the corresponding PEM fuel cells. Even though the current status is still far from meeting the expectations. More efforts are thus required to further research and develop the desired PGM-free catalysts for cathodes in PEM fuel cells. Herein, this paper discusses the most recent progress of PGM-free catalysts and their applications in the practical membrane electrolyte assembly and PEM fuel cells. The most promising directions for future research and development are pointed out in terms of enhancing the intrinsic activity, reducing the degradation, as well as the study at the level of fuel cell stacks.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3932
Author(s):  
Jie Song ◽  
Qing Ye ◽  
Kun Wang ◽  
Zhiyuan Guo ◽  
Meiling Dou

The development of high efficient stacks is critical for the wide spread application of proton exchange membrane fuel cells (PEMFCs) in transportation and stationary power plant. Currently, the favorable operation conditions of PEMFCs are with single cell voltage between 0.65 and 0.7 V, corresponding to energy efficiency lower than 57%. For the long term, PEMFCs need to be operated at higher voltage to increase the energy efficiency and thus promote the fuel economy for transportation and stationary applications. Herein, PEMFC single cell was investigated to demonstrate its capability to working with voltage and energy efficiency higher than 0.8 V and 65%, respectively. It was demonstrated that the PEMFC encountered a significant performance degradation after the 64 h operation. The cell voltage declined by more than 13% at the current density of 1000 mA cm−2, due to the electrode de-activation. The high operation potential of the cathode leads to the corrosion of carbon support and then causes the detachment of Pt nanoparticles, resulting in significant Pt agglomeration. The catalytic surface area of cathode Pt is thus reduced for oxygen reduction and the cell performance decreased. Therefore, electrochemically stable Pt catalyst is highly desirable for efficient PEMFCs operated under cell voltage higher than 0.8 V.


Sign in / Sign up

Export Citation Format

Share Document