IMPLEMENTATION OF RESPONSE SURFACE METHODOLOGY TO CREATE AN OPTIMUM BIODIESEL POWER PLANT DERIVED FROM EMPTY FRUIT BUNCHES

2021 ◽  
pp. 1-31
Author(s):  
Somboon Sukpancharoen ◽  
poj hansirisawat ◽  
Thongchai Srinophakun

Abstract This study examined product separation in biodiesel power plants to optimise the process. Response Surface Methodology (RSM) was used to identify the optimum parameters for the process of separation, to maximise profitability while also reducing carbon dioxide emissions. The mass and energy balance was assessed using Aspen Plus software, while RSM was carried out with Design-Expert software. Development of the characteristic equation determined that the model for gasoline yield, power generation, and carbon dioxide emissions was significant at the 95% confidence level. The R-squared value predicted by the model was found to be 0.97–1.00. In an optimal plant, profit can rise by 3,836 USD over the year, while carbon dioxide emissions decline annually by 17.97 tons.

2021 ◽  
Vol 19 (6) ◽  
pp. 562-574
Author(s):  
Prakash Binnal ◽  
Rajashekhara S. ◽  
Jagadish Patil

Colour is one of most important properties of foods and beverages and is a basis for their identification and acceptability. Anthocyanin from red cabbage was extracted using 50 % ethanol. The extract was dealcoholized by Liquid Emlusion Membrane technology (LEM). Parafin oil was used as a solvent, lecithin was used as a surfactant and water as stripping medium. Response surface methodology (RSM) was used to design the experiments. A total of 30 experiments were conducted in accordance with central composite rotatable design. Design expert 8 was used to design the experiments. % extraction of alcohol in each case was determined. A suitable model was fitted to experimental data by regression analysis (R-square=0.93). Response surface plot were analysed and optimum parameters for dealcoholization were found to be speed=365.44 rpm, time=18.62 min, concentration of lecithin=2.84 %, feed to emulsion ratio=3.05. A maximum dealcoholisation of 18.63 % was observed under these conditions


Author(s):  
Michael O’Sullivan ◽  
Michael Gravatt ◽  
Joris Popineau ◽  
John O’Sullivan ◽  
Warren Mannington ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 595
Author(s):  
Mahir Faris Abdullah ◽  
Rozli Zulkifli ◽  
Hazim Moria ◽  
Asmaa Soheil Najm ◽  
Zambri Harun ◽  
...  

Impinging jets are considered to be a well-known technique that offers high local heat transfer rates. No correlation could be established in the literature between the significant parameters and the Nusselt number, and investigation of the interactions between the correlated factors has not been conducted before. An experimental analysis based on the twin impingement jet mechanism was achieved to study the heat transfer rate pertaining to the surface plate. In the current paper, four influential parameters were studied: the spacing between nozzles, velocity, concentration of Nano solution coating and nozzle-plate distance, which are considered to be effective parameters for the thermal conductivity and the heat transfer coefficient of TiO2 nanoparticle, an X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) analysis were done, which highlighted the structure and showed that the nanosolution coated the surface homogenously. Moreover, a comparison was done for the experimental results with that of the predicted responses generated by the Design Expert software, Version 7 User’s Guide, USA. A response surface methodology (RSM) was employed to improve a mathematical model by accounting for a D-optimal design. In addition, the analysis of variance (ANOVA) was employed for testing the significance of the models. The maximum Nu of 91.47, where H = S = 1 cm; Reynolds number of 17,000, and TiO2 nanoparticle concentration of 0.5% M. The highest improvement rate in Nusselt was about 26%, achieved with TiO2 Nanoparticle, when S = 3 cm, H = 6 cm and TiO2 nanoparticle = 0.5 M. Furthermore, based on the statistical analysis, the expected values were found to be in satisfactory agreement with that of the empirical data, which was conducted by accounting for the proposed models’ excellent predictability. Multivariate approaches are very useful for researchers, as well as for applications in industrial processes, as they lead to increased efficiency and reduced costs, so the presented results of this work could encourage the overall uses of multivariate methods in these fields. Hypotheses: A comparison was done for the predicted responses generated by the Design Expert software with the experimental results and then studied to verify the following hypotheses: ► Preparation of three concentrations of TiO2 nanosolution was done and studied. ► The heat transfer rate could be increased by surface coating with TiO2 nanoparticle. ► The heat transfer could be improved by the impingement jet technique with suitable adjustments.


2021 ◽  
Vol 11 (5) ◽  
pp. 2009
Author(s):  
Valerii Havrysh ◽  
Antonina Kalinichenko ◽  
Anna Brzozowska ◽  
Jan Stebila

The depletion of fossil fuels and climate change concerns are drivers for the development and expansion of bioenergy. Promoting biomass is vital to move civilization toward a low-carbon economy. To meet European Union targets, it is required to increase the use of agricultural residues (including straw) for power generation. Using agricultural residues without accounting for their energy consumed and carbon dioxide emissions distorts the energy and environmental balance, and their analysis is the purpose of this study. In this paper, a life cycle analysis method is applied. The allocation of carbon dioxide emissions and energy inputs in the crop production by allocating between a product (grain) and a byproduct (straw) is modeled. Selected crop yield and the residue-to-crop ratio impact on the above indicators are investigated. We reveal that straw formation can consume between 30% and 70% of the total energy inputs and, therefore, emits relative carbon dioxide emissions. For cereal crops, this energy can be up to 40% of the lower heating value of straw. Energy and environmental indicators of a straw return-to-field technology and straw power generation systems are examined.


Author(s):  
Jongsup Hong ◽  
Ahmed F. Ghoniem ◽  
Randall Field ◽  
Marco Gazzino

Oxy-fuel combustion coal-fired power plants can achieve significant reduction in carbon dioxide emissions, but at the cost of lowering their efficiency. Research and development are conducted to reduce the efficiency penalty and to improve their reliability. High-pressure oxy-fuel combustion has been shown to improve the overall performance by recuperating more of the fuel enthalpy into the power cycle. In our previous papers, we demonstrated how pressurized oxy-fuel combustion indeed achieves higher net efficiency than that of conventional atmospheric oxy-fuel power cycles. The system utilizes a cryogenic air separation unit, a carbon dioxide purification/compression unit, and flue gas recirculation system, adding to its cost. In this study, we perform a techno-economic feasibility study of pressurized oxy-fuel combustion power systems. A number of reports and papers have been used to develop reliable models which can predict the costs of power plant components, its operation, and carbon dioxide capture specific systems, etc. We evaluate different metrics including capital investments, cost of electricity, and CO2 avoidance costs. Based on our cost analysis, we show that the pressurized oxy-fuel power system is an effective solution in comparison to other carbon dioxide capture technologies. The higher heat recovery displaces some of the regeneration components of the feedwater system. Moreover, pressurized operating conditions lead to reduction in the size of several other critical components. Sensitivity analysis with respect to important parameters such as coal price and plant capacity is performed. The analysis suggests a guideline to operate pressurized oxy-fuel combustion power plants in a more cost-effective way.


Sign in / Sign up

Export Citation Format

Share Document