V-SHAPED HOLES FOR FULL COVERAGE FILM COOLING OF A HIGH-PRESSURE NOZZLE GUIDE VANE

2021 ◽  
pp. 1-28
Author(s):  
Giovanna Barigozzi ◽  
Hamed Abdeh ◽  
Samaneh Rouina ◽  
Luca Abba ◽  
Matteo Iannone ◽  
...  

Abstract This paper describes an experimental activity carried out to investigate the potential of V-shaped holes for film cooling a high-pressure nozzle guide vane. The newly designed V-shaped scheme was compared with a standard laidback fan-shaped holes. The influence of showerhead cooling was also assessed. Different injection conditions were examined under the same cascade operating condition using CO2 as coolant. The quality of holes geometry and their discharging behavior was first characterized. Then dual luminophore Pressure Sensitive Paint (PSP) was used for measuring the adiabatic film cooling effectiveness all over the vane surface. Results of the current work showed that using a V-shaped hole configuration would give nearly the same surface protection as standard shaped holes with a reduced number of holes and, thus, at lower coolant flow consumption.

2021 ◽  
pp. 1-13
Author(s):  
Christian Landfester ◽  
Gunther Mueller ◽  
Robert Krewinkel ◽  
Clemens Domnick ◽  
Martin Böhle

Abstract This comparative study is concerned with the advances in nozzle guide vane (NGV) design developments and their influence on endwall film cooling performance by injecting coolant through the purge slot. This experimental study compares the film cooling effectiveness and the aerodynamic effects for different purge slot configurations on both a flat and an axisymmetrically contoured endwall of a NGV. While the flat endwall cascade was equipped with cylindrical vanes, the contoured endwall cascade consisted of modern NGVs which represent state-of-the-art high-pressure turbine design standards. Geometric variations, e.g. the slot width and injection angle, as well as different blowing ratios were realized. The mainstream flow parameters were set to meet real engine conditions with regard to Reynolds and Mach numbers. Pressure Sensitive Paint was used to determine the adiabatic film cooling effectiveness. Five-hole probe measurements were performed to measure the flow field in the vane wake region. For a more profound insight into the origin of the secondary flows, oil dye visualizations were carried out. The results show that the advances in NGV design have a significantly positive influence on the distribution of the coolant. This has to be attributed to lesser disturbance of the coolant propagation by secondary flow for the optimized NGV design, since the design features are intended to suppress the formation of secondary flow. It is therefore advisable to take these effects into account when designing the film cooling system of a modern high-pressure turbine.


Author(s):  
T. Arts ◽  
A. E. Bourguignon

The purpose of this paper is to quantify the influence on external convective heat transfer of a coolant film whose position varies along the pressure side of a high pressure turbine nozzle guide vane. The measurements were performed in the short duration Isentropic Light Piston Compression Tube facility of the von Karman Institute. The effects of external and internal flow are considered in terms of Mach number, Reynolds number, freestream turbulence intensity, blowing rate and coolant to freestream temperature ratio. The way to evaluate these results in terms of film cooling efficiency and heat transfer coefficient is finally discussed.


Author(s):  
S. Ravelli ◽  
G. Barigozzi

The main purpose of this numerical investigation is to overcome the limitations of the steady modeling in predicting the cooling efficiency over the cutback surface in a high pressure turbine nozzle guide vane. Since discrepancy between Reynolds-averaged Navier–Stokes (RANS) predictions and measured thermal coverage at the trailing edge was attributable to unsteadiness, Unsteady RANS (URANS) modeling was implemented to evaluate improvements in simulating the mixing between the mainstream and the coolant exiting the cutback slot. With the aim of reducing the computation effort, only a portion of the airfoil along the span was simulated at an exit Mach number of Ma2is = 0.2. Three values of the coolant-to-mainstream mass flow ratio were considered: MFR = 0.66%, 1.05%, and 1.44%. Nevertheless the inherent vortex shedding from the cutback lip was somehow captured by the URANS method, the computed mixing was not enough to reproduce the measured drop in adiabatic effectiveness η along the streamwise direction, over the cutback surface. So modeling was taken a step further by using the Scale Adaptive Simulation (SAS) method at MFR = 1.05%. Results from the SAS approach were found to have potential to mimic the experimental measurements. Vortices shedding from the cutback lip were well predicted in shape and magnitude, but with a lower frequency, as compared to PIV data and flow visualizations. Moreover, the simulated reduction in film cooling effectiveness toward the trailing edge was similar to that observed experimentally.


Author(s):  
Dong-Ho Rhee ◽  
Young Seok Kang ◽  
Bong Jun Cha ◽  
Sanga Lee

Most of the optimization researches on film cooling have dealt with adiabatic film cooling effectiveness on the surface. However, the information on the overall cooling effectiveness is required to estimate exact performance of the optimization configuration since hot components such as nozzle guide vane have not only film cooling but also internal cooling features such as rib turbulators, jet impingement and pin-fins on the inner surface. Our previous studies [1,2] conducted the hole arrangement optimization to improve adiabatic film cooling effectiveness values and uniformity on the pressure side surface of the nozzle guide vane. In this study, the overall cooling effectiveness values were obtained at various cooling mass flow rates experimentally for the baseline and the optimized hole arrangements proposed by the previous study [1] and compared with the adiabatic film cooling effectiveness results. The tests were conducted at mainstream exit Reynolds number based on the chord of 2.2 × 106 and the coolant mass flow rate from 5 to 10% of the mainstream. For the experimental measurements, a set of tests were conducted using an annular sector transonic turbine cascade test facility in Korea Aerospace Research Institute. To obtain the overall cooling effectiveness values on the pressure side surface, the additive manufactured nozzle guide vane made of polymer material and Inconel 718 were installed and the surface temperature was measured using a FLIR infrared camera system. Since the optimization was based on the adiabatic film cooling effectiveness, the regions with rib turbulators and film cooling holes show locally higher overall cooling effectiveness due to internal convection and conduction, which can cause non-uniform temperature distributions. Therefore, the optimization of film cooling configuration should consider the effect of the internal cooling to avoid undesirable non-uniform cooling.


2021 ◽  
Author(s):  
Christian Landfester ◽  
Gunther Müller ◽  
Robert Krewinkel ◽  
Clemens Domnick ◽  
Martin Böhle

Abstract This comparative study is concerned with the advances in nozzle guide vane (NGV) design developments and their influence on the film cooling performance by injecting coolant through the purge slot. An experimental study compares the film cooling effectiveness as well as the aerodynamic effects for different purge slot configurations on both a flat and an axisymmetrically contoured endwall of a NGV. While the flat endwall cascade was equipped with four cylindrical vanes, the contoured endwall cascade consisted of four modern NGVs which represent state-of-the-art high-pressure turbine design standards. Geometric variations, e.g. the purge slot width and injection angle, as well as different blowing ratios (BR) at an engine-like density ratio (DR = 1.6) were realized to investigate the real-life effect of thermal expansion, design modifications and the interaction between secondary flow and coolant. The mainstream flow parameters were set to meet real engine conditions with regard to Reynolds and Mach numbers. The Pressure Sensitive Paint (PSP) technique was used to determine the adiabatic film cooling effectiveness. Five-hole probe measurements (DR = 1.0) were performed to measure the flow field with its characteristic vortex structures as well as the loss distribution in the vane wake region. For a more profound insight into the origin and development of the secondary flows, oil dye visualizations were carried out on both endwalls. The measurement results will be discussed based on a side-by-side comparison of the distribution of film cooling effectiveness on the endwall, its area-averaged values as well as the two-dimensional distribution of total pressure losses and the secondary flow field. The results of this study show that the advances in NGV design development have had a significantly positive influence on the distribution of the coolant. This has to be attributed to lesser disturbance of the coolant propagation by secondary flow for the optimized NGV design, since the design features are intended to suppress the formation of secondary flow. In contrast to the results of the cylindrical profile, sufficient cooling can be already provided with a perpendicular injection in the case of the modern NGV. It is therefore advisable to take these effects into account when designing the film cooling system of a modern high-pressure turbine.


Author(s):  
Giorgio Occhioni ◽  
Shahrokh Shahpar ◽  
Haidong Li

An improvement in overall efficiency and power output for gas turbine engines can be obtained by increasing the combustor exit temperature, but the thermal management of metal parts exposed to hot gases is challenging. Discrete film cooling, combined with internal convective cooling is the current state-of-the-art available to aerothermal designers of these components. To simplify the simulation problem in the aerodynamic design phase, it is common practice to replace the cooling holes with source strips applied to the blade. This could lead to inaccuracies in high pressure turbine performance prediction. This study has been carried out on a fully-featured high pressure turbine stage using high-fidelity simulations. The film cooling holes on the nozzle guide vane and on the rotor are initially modelled using a strip model approach. Then, to increase the model fidelity, the strips on the suction side of the rotor are replaced with discrete fan shaped film cooling holes. A rigid body rotation is also applied to the nozzle guide vane to vary the stage capacity and reaction. The effects of the mesh topology & resolution are also taken into account. The results obtained with these two approaches are then compared, giving the designers a better understanding on film cooling modelling and relationship between capacity, reaction and performance. The accurate prediction of the complex interaction between cavity inflows and the main-flow, still represent a challenge for the state of the art RANS solvers. Hence, an unsteady phase-lag approach has been used to overcome the RANS limitations. A validation of the unsteady solutions has been carried out with respect to experimental data.


1990 ◽  
Vol 112 (3) ◽  
pp. 512-520 ◽  
Author(s):  
T. Arts ◽  
A. E. Bourguignon

The purpose of this paper is to quantify the influence on external convective heat transfer of a coolant film whose position varies along the pressure side of a high-pressure turbine nozzle guide vane. The measurements were performed in the short-duration Isentropic Light Piston Compression Tube facility of the von Karman Institute. The effects of external and internal flow are considered in terms of Mach number, Reynolds number, free-stream turbulence intensity, blowing rate, and coolant to free-stream temperature ratio. The way to evaluate these results in terms of film cooling efficiency and heat transfer coefficient is finally discussed.


Author(s):  
Nicholas E. Holgate ◽  
Peter T. Ireland ◽  
Kevin P. Self

Adiabatic film cooling effectiveness measurements are made on nozzle guide vane leading edges in an engine-realistic flow environment. The tested leading edges feature radial showerheads with different spanwise distributions of hole surface angle. The showerheads blow towards the midspan, except for one model with showerhead holes orthogonal to the vane surface. The results show that low surface angle radial showerhead holes generate high effectiveness within their rows and further downstream, but neglect the stagnation region lying between the two most upstream cooling hole rows. This downstream effectiveness gain is due to both the continued surface attachment of this coolant as it progresses downstream, and its beneficial interactions with downstream cooling jets. Moderate radial showerhead surface angles cause moderate coolant jet penetration into the mainstream, which promotes near-surface mixing of the coolant with the mainstream, increasing stagnation region effectiveness. The mixing effect is enhanced by the intense turbulence generated by combustor dilution jets. High surface angles may cause the stagnation region coolant to penetrate too far for either of these gains to be realised. Considering also the presence of endwall film cooling, these effects, taken together, suggest the superiority of radial showerheads which blow towards the midspan, as against those which blow towards each endwall. Surface temperature data is acquired by a novel infrared thermography technique which permits measurement of both heat transfer coefficient and film effectiveness from a single heated test.


Sign in / Sign up

Export Citation Format

Share Document