Fluid Dynamics Behind a Circular Cylinder Embedded with an Active Flapping Jet Actuator

Author(s):  
Donglai GAO ◽  
Xu Chang ◽  
Guanbin Chen ◽  
Wenli Chen

Abstract The effects of an active flapping jet actuator on the wake flow dynamics behind a circular cylinder in wind tunnel tests were investigated. An active flapping jet actuator was embedded in the cylinder in advance to invoke a spontaneous flapping jet into the cylinder's wake. The experiment, which was performed in a wind tunnel with a Reynolds number of Re = 1.99 × 104, was based on the oncoming wind speed, cylinder diameter, and kinematic viscosity of the air at the laboratory's temperature. The flow field structures behind the cylinder model with different dimensionless jet momentum coefficients, Cu, were obtained using the high-speed particle image velocimetry technique. The proper orthogonal decomposition (POD) method was used to represent the variation of the POD mode energy, mode coefficients, and the reconstructed spreading vorticity. The dynamic temporal evolution and time-averaged results in the near wake region of the cylinder with and without active flapping-jet control were calculated and analyzed to illustrate the rich phenomena produced by, and the control effect of, the flapping jet. For Cu values up to 0.0554, the periodic vortex shedding was pushed to farther wakes. Meanwhile, the time-averaged wake changed considerably, and the distributions of the turbulent kinetic energy and Reynolds shear stress decreased significantly. A data-driven dynamic mode decomposition method was used to extract the coherent structure of the wake of the cylinder embedded with the flapping jet actuator. The Strouhal number of the main mode of the Cu = 0.0865 case was different from the natural case.

2019 ◽  
Vol 9 (4) ◽  
pp. 759 ◽  
Author(s):  
Wen Liu ◽  
Dilong Guo ◽  
Zijian Zhang ◽  
Dawei Chen ◽  
Guowei Yang

The wake region of high-speed trains is an area of complex turbulent flow characterized by the periodic generation and shedding of vortices, which causes discomfort to passengers and affects the stability and safety of the train. In this study, the unsteady characteristics of the wake flows of three 1:1 scale China Railway High-Speed 380A (CRH380A) high-speed train models with different degrees of simplification were numerically investigated using the improved delayed detached eddy simulation (IDDES) method. Analyses of the aerodynamic forces, train-induced slipstream, and turbulent kinetic energy (TKE) were conducted to determine the effects of the bogies on the wake flow of the high-speed train. It was found that the existence of bogies on the bottom of the train, especially the last bogie, not only enhanced the wake flow but also introduced large perturbances into the wake flow. Moreover, the generation and evolution of the vortices in the wake flows were determined by analyzing the instantaneous flow fields and coherent flow structures that were obtained by the dynamic mode decomposition (DMD) method. The results showed that a pair of large, counter-rotating streamwise vortices in the real model of the high-speed train was generated by the cowcatcher and their intensity was significantly enhanced by perturbances that were introduced by the bogies on the bottom of the train.


2019 ◽  
Vol 47 (3) ◽  
pp. 196-210
Author(s):  
Meghashyam Panyam ◽  
Beshah Ayalew ◽  
Timothy Rhyne ◽  
Steve Cron ◽  
John Adcox

ABSTRACT This article presents a novel experimental technique for measuring in-plane deformations and vibration modes of a rotating nonpneumatic tire subjected to obstacle impacts. The tire was mounted on a modified quarter-car test rig, which was built around one of the drums of a 500-horse power chassis dynamometer at Clemson University's International Center for Automotive Research. A series of experiments were conducted using a high-speed camera to capture the event of the rotating tire coming into contact with a cleat attached to the surface of the drum. The resulting video was processed using a two-dimensional digital image correlation algorithm to obtain in-plane radial and tangential deformation fields of the tire. The dynamic mode decomposition algorithm was implemented on the deformation fields to extract the dominant frequencies that were excited in the tire upon contact with the cleat. It was observed that the deformations and the modal frequencies estimated using this method were within a reasonable range of expected values. In general, the results indicate that the method used in this study can be a useful tool in measuring in-plane deformations of rolling tires without the need for additional sensors and wiring.


Author(s):  
Jeongan Choi ◽  
Rajavasanth Rajasegar ◽  
Qili Liu ◽  
Tonghun Lee ◽  
Jihyung Yoo

Abstract In this work, the growth regime of combustion instability was studied by analyzing 10 kHz OH planar laser induced fluorescence (PLIF) images through a combination of dynamic mode decomposition (DMD) and spectral proper orthogonal decomposition (SPOD) methods. Combustion instabilities were induced in a mesoscale burner array through an external speaker at an imposed perturbation frequency of 210 Hz. During the transient onset of combustion instabilities, 10 kHz OH PLIF imaging was employed to capture spatially and temporally resolved flame images. Increased acoustic perturbations prevented flame reignition in the central recirculation zone and eventually led to the flame being extinguished inwards from the outer burner array elements. Coherent modes and their growth rates were obtained from DMD spectral analyses of high-speed OH PLIF images. Positive growth rates were observed at the forcing frequency during the growth regime. Coherent structures, closely associated with thermoacoustic instability, were extracted using an appropriate SPOD filter operation to identify mode structures that correlate to physical phenomena such as shear layer instability and flame response to longitudinal acoustic forcing. Overall, a combination of DMD and SPOD was shown to be effective at analyzing the onset and propagation of combustion instabilities, particularly under transient burner operations.


Author(s):  
Adesile Ajisafe ◽  
Midhat Talibi ◽  
Andrea Ducci ◽  
Ramanarayanan Balachandran ◽  
Nishant Parsania ◽  
...  

Abstract Liquid fuel spray characterisation is essential for understanding the mechanisms underlying fuel energy release and pollutant formation. Careful selection of operating conditions can promote flow instabilities in the fuel spray which can enhance atomisation and fuel mixing, thereby resulting in more efficient combustion. However, the inherent instabilities present in the spray could have adverse effect on the combustor dynamics. Hence, it is important to better understand the dynamical behaviour of the spray, and particularly at representative operating conditions. This work describes an experimental investigation of dynamical behaviour of pressure-swirl atomisers used in Siemens industrial gas turbine combustors, at a range of chamber pressures and fuel injection pressures, using high speed laser planar imaging. Two modal decomposition techniques — Proper Orthogonal Decomposition (POD) and Dynamic Mode Decomposition (DMD) — are applied and compared to assess the spray dynamics. Results indicate that both POD and DMD are able to capture periodic structures occurring in the spray at different spatial length scales. The characteristic frequencies estimated from both the methods are in good agreement with each other. Both techniques are able to identify coherent structures with variable size, shape and level of staggering, which are observed to be dependent on the pressure difference across the atomiser and the chamber pressure. The spatio-temporally resolved data and the results could be used for spray model development and validation. Furthermore, the methods employed could be applied to other fuel atomisers, and more complicated conditions involving cross flow and higher chamber temperatures.


2014 ◽  
Vol 748 ◽  
pp. 848-878 ◽  
Author(s):  
Pramod K. Subbareddy ◽  
Matthew D. Bartkowicz ◽  
Graham V. Candler

AbstractWe study the transition of a Mach 6 laminar boundary layer due to an isolated cylindrical roughness element using large-scale direct numerical simulations (DNS). Three flow conditions, corresponding to experiments conducted at the Purdue Mach 6 quiet wind tunnel are simulated. Solutions are obtained using a high-order, low-dissipation scheme for the convection terms in the Navier–Stokes equations. The lowest Reynolds number ($Re$) case is steady, whereas the two higher $Re$ cases break down to a quasi-turbulent state. Statistics from the highest $Re$ case show the presence of a wedge of fully developed turbulent flow towards the end of the domain. The simulations do not employ forcing of any kind, apart from the roughness element itself, and the results suggest a self-sustaining mechanism that causes the flow to transition at a sufficiently large Reynolds number. Statistics, including spectra, are compared with available experimental data. Visualizations of the flow explore the dominant and dynamically significant flow structures: the upstream shock system, the horseshoe vortices formed in the upstream separated boundary layer and the shear layer that separates from the top and sides of the cylindrical roughness element. Streamwise and spanwise planes of data were used to perform a dynamic mode decomposition (DMD) (Rowley et al., J. Fluid Mech., vol. 641, 2009, pp. 115–127; Schmid, J. Fluid Mech., vol. 656, 2010, pp. 5–28).


Author(s):  
Scott B. Leask ◽  
Vincent G. McDonell ◽  
Scott Samuelsen

This work presents the atomization characteristics and dynamics of water-in-heptane (W/H) emulsions injected into a gaseous crossflow. W/H mixtures were tested while varying momentum flux ratios and aerodynamic Weber numbers. Different injector orifice diameters and orifice length-to-diameter ratios were used to test the generality of the results. The atomization properties of W/H mixtures were compared with properties of neat water and neat heptane to evaluate the effect of an emulsion on droplet sizing, cross-sectional stability and dispersion, and jet penetration depth. Liquid dynamics were extracted through analyzing instantaneous spray measurements and dynamic mode decomposition (DMD) on high-speed video recordings of the atomization processes. Correlations were proposed to establish preliminary relationships between fundamental spray processes and test conditions. These correlations allowed for emulsion behavior to be compared with neat liquid behavior. The use of emulsions induces greater spray instability than through using neat liquids, likely due to the difficulty in injecting a stable emulsion. Neat liquid correlations were produced and successfully predicted various spray measurements. These correlations, however, indicate that injector geometry has an effect on spray properties which need to be addressed independently. The emulsions are unable to adhere to the neat liquid correlations suggesting that an increased number of correlation terms are required to adequately predict emulsion behavior.


2019 ◽  
Vol 878 ◽  
pp. 875-906
Author(s):  
Adnan Munir ◽  
Ming Zhao ◽  
Helen Wu ◽  
Lin Lu

Flow around a high-speed rotating circular cylinder for $Re\leqslant 500$ is investigated numerically. The Reynolds number is defined as $UD/\unicode[STIX]{x1D708}$ with $U$, $D$ and $\unicode[STIX]{x1D708}$ being the free-stream flow velocity, the diameter of the cylinder and the kinematic viscosity of the fluid, respectively. The aim of this study is to investigate the effect of a high rotation rate on the wake flow for a range of Reynolds numbers. Simulations are performed for Reynolds numbers of 100, 150, 200, 250 and 500 and a wide range of rotation rates from 1.6 to 6 with an increment of 0.2. Rotation rate is the ratio of the rotational speed of the cylinder surface to the incoming fluid velocity. A systematic study is performed to investigate the effect of rotation rate on the flow transition to different flow regimes. It is found that there is a transition from a two-dimensional vortex shedding mode to no vortex shedding mode when the rotation rate is increased beyond a critical value for Reynolds numbers between 100 and 200. Further increase in rotation rate results in a transition to three-dimensional flow which is characterized by the presence of finger-shaped (FV) vortices that elongate in the wake of the cylinder and very weak ring-shaped vortices (RV) that wrap the surface of the cylinder. The no vortex shedding mode is not observed at Reynolds numbers greater than or equal to 250 since the flow remains three-dimensional. As the rotation rate is increased further, the occurrence frequency and size of the ring-shaped vortices increases and the flow is dominated by RVs. The RVs become bigger in size and the flow becomes chaotic with increasing rotation rate. A detailed analysis of the flow structures shows that the vortices always exist in pairs and the strength of separated shear layers increases with the increase of rotation rate. A map of flow regimes on a plane of Reynolds number and rotation rate is presented.


Author(s):  
Antoine Renaud ◽  
Sébastien Ducruix ◽  
Laurent Zimmer

Abstract Despite being good candidates for the reduction of pollutant emissions from gas turbines, burners operating in lean premixed prevaporized regimes often face stability issues and can be sensitive to perturbations. The swirling flow used to aerodynamically stabilize the flame can also lead to the appearance of a large-scale coherent flow structure known as the precessing vortex core (PVC). In this study, a swirl-stabilized combustor fed with liquid dodecane is studied at a globally lean operating condition with the help of high-speed diagnostics and dynamic mode decomposition (DMD) as the main postprocessing method. It is shown that the trace of a PVC originating inside the injector is still present in the fuel spray at the entrance of the chamber even though the aerodynamical structure itself is not detectable anymore. The perturbation of the fuel spray is then transmitted to the flame through local equivalence ratio fluctuations. It is observed that the PVC trace on the spray and thus on the flame can be suppressed by air flow modulations generated by a siren device. The suppression of this trace is shown to come from a decay of the aerodynamical structure itself rather than by a change in fuel mixing or vaporization. Analysis of the characteristic frequency of the PVC shows a frequency spread indicating a loss of coherence of the structure with the high-amplitude air flow rate fluctuations.


Author(s):  
Martin Peichl ◽  
Steffen Mack ◽  
Thomas Indinger ◽  
Friedhelm Decker

The drag of a car is highly dependent on the topology of its complex wake system. Small changes in the shape of the car, that do not have a big effect when considered separately, can lead to significant changes in the total drag when the vortex systems of the changed part of the car body interact with the wake vortices. To understand these interferences, a method is necessary that decomposes the flow based on dynamic information. In this paper, the feasibility of using the Dynamic Mode Decomposition (DMD) to analyze the dynamic behavior of the wake flow of a car is investigated. The DMD is found to extract useful information from the flow when applied to three dimensional velocity vector fields. The CFD simulations are validated by yet unpublished experimental results from experiments in two different wind tunnels.


Sign in / Sign up

Export Citation Format

Share Document