Deposition Process and Equivalent Markov Motion of High-inertia Particles in a Long Straight Pipeline

Author(s):  
Ri Zhang ◽  
Kai Xu ◽  
Yong Liu ◽  
Yumiao Wang

Abstract Two methods are used to study the process of particle deposition in a turbulent pipe flow. The Monte Carlo method tracks 10,000 particles in the turbulent pipe flow to reproduce the deposition process of the particles. The deposition velocity of the particles is determined by calculating the proportion of particles passing through the test section. The simplified deposition model uses an equivalent Markov motion instead of the radial movement of the particle in the turbulent core. The probability that a particle leaves the turbulent core depends on the radial particle position and the probability density distribution of the random vortex. The probability that a particle penetrates the boundary layer can be solved by integrating the probability density distribution of radial particle velocity. The deposition velocity of particles can be obtained by calculating the probability of an individual particle leaving the turbulent core and penetrating the boundary layer. Five experimental data series from the literature are applied to examine the predictive abilities of the two methods. The results demonstrate that the Monte Carlo method can be properly used to track the particle deposition process in the diffusion-impaction and inertia-moderated regimes. The simplified model is suitable for high-inertia particles.

2020 ◽  
Vol 2020 (4) ◽  
pp. 25-32
Author(s):  
Viktor Zheltov ◽  
Viktor Chembaev

The article has considered the calculation of the unified glare rating (UGR) based on the luminance spatial-angular distribution (LSAD). The method of local estimations of the Monte Carlo method is proposed as a method for modeling LSAD. On the basis of LSAD, it becomes possible to evaluate the quality of lighting by many criteria, including the generally accepted UGR. UGR allows preliminary assessment of the level of comfort for performing a visual task in a lighting system. A new method of "pixel-by-pixel" calculation of UGR based on LSAD is proposed.


Author(s):  
V.A. Mironov ◽  
S.A. Peretokin ◽  
K.V. Simonov

The article is a continuation of the software research to perform probabilistic seismic hazard analysis (PSHA) as one of the main stages in engineering seismic surveys. The article provides an overview of modern software for PSHA based on the Monte Carlo method, describes in detail the work of foreign programs OpenQuake Engine and EqHaz. A test calculation of seismic hazard was carried out to compare the functionality of domestic and foreign software.


2019 ◽  
Vol 20 (12) ◽  
pp. 1151-1157 ◽  
Author(s):  
Alla P. Toropova ◽  
Andrey A. Toropov

Prediction of physicochemical and biochemical behavior of peptides is an important and attractive task of the modern natural sciences, since these substances have a key role in life processes. The Monte Carlo technique is a possible way to solve the above task. The Monte Carlo method is a tool with different applications relative to the study of peptides: (i) analysis of the 3D configurations (conformers); (ii) establishment of quantitative structure – property / activity relationships (QSPRs/QSARs); and (iii) development of databases on the biopolymers. Current ideas related to application of the Monte Carlo technique for studying peptides and biopolymers have been discussed in this review.


1999 ◽  
Vol 72 (1) ◽  
pp. 68-72
Author(s):  
M. Yu. Al’es ◽  
A. I. Varnavskii ◽  
S. P. Kopysov

Sign in / Sign up

Export Citation Format

Share Document