Atomic-level, Energy-conversion Heat Transfer

2021 ◽  
Author(s):  
Massoud Kaviany

Abstract Heat is stored in quanta of kinetic and potential energies in matter. The temperature represents the equilibrium and exciting occupation (boson) of these energy conditions. Temporal and spatial temperature variations and heat transfer are associated with the kinetics of these equilibrium excitations. During energy-conversion (between electron and phonon systems), the occupancies deviate from equilibria, while holding atomic-scale, inelastic spectral energy transfer kinetics. Heat transfer physics reaches nonequilibrium energy excitations and kinetics among the principal carriers, phonon, electron (and holes and ions), fluid particle, and photon. This allows atomic-level tailoring of energetic materials and energy-conversion processes and their efficiencies. For example, modern thermal-electric harvesters have transformed broad-spectrum, high-entropy heat into a narrow spectrum of low-entropy emissions to efficiently generate thermal electricity. Phonoelectricity, in contrast, intervenes before a low-entropy population of nonequilibrium optical phonons becomes a high-entropy heat. In particular, the suggested phonovoltaic cell generates phonoelectricity by employing the nonequilibrium, low-entropy, and elevated temperature optical-phonon produced population–for example, by relaxing electrons, excited by an electric field. A phonovoltaic material has an ultra-narrow electronic bandgap, such that the hot optical-phonon population can relax by producing electron-hole pairs (and power) instead of multiple acoustic phonons (and entropy). Examples of these quanta and spectral heat transfer are reviewed, contemplating a prospect for education and research in this field.

Rare Metals ◽  
2021 ◽  
Author(s):  
Yu-Chen Qin ◽  
Feng-Qi Wang ◽  
Xin-Ming Wang ◽  
Ming-Wei Wang ◽  
Wen-Long Zhang ◽  
...  

2005 ◽  
Vol 287 ◽  
pp. 233-241 ◽  
Author(s):  
Paul F. Becher ◽  
Gayle S. Painter ◽  
Naoya Shibata ◽  
Hua Tay Lin ◽  
Mattison K. Ferber

Silicon nitride ceramics are finding uses in numerous engineering applications because of their tendency to form whisker-like microstructures that can overcome the inherent brittle nature of ceramics. Studies now establish the underlying microscopic and atomic-scale principles for engineering a tough, strong ceramic. The theoretical predictions are confirmed by macroscopic observations and atomic level characterization of preferential segregation at the interfaces between the grains and the continuous nanometer thick amorphous intergranular film (IGF). Two interrelated factors must be controlled for this to occur including the generation of the elongated reinforcing grains during sintering and debonding of the interfaces between the reinforcing grains and the matrix. The reinforcing grains can be controlled by (1) seeding with beta particles and (2) the chemistry of the additives, which also can influence the interfacial debonding conditions. In addition to modifying the morphology of the reinforcing grains, it now appears that the combination of preferential segregation and strong bonding of the additives (e.g., the rare earths, RE) to the prism planes can also result in sufficiently weakens the bond of the interface with the IGF to promote debonding. Thus atomic-scale engineering may allow us to gain further enhancements in fracture properties. This new knowledge will enable true atomic-level engineering to be joined with microscale tailoring to develop the advanced ceramics that will be required for more efficient engines, new electronic device architectures and composites.


2021 ◽  
Author(s):  
David Dellong ◽  
Florent Le Courtois ◽  
Jean-Michel Boutonnier ◽  
Bazile G. Kinda

<p>Maps of underwater noise generated by shipping activity became a useful tool to support international regulations on marine environments. They are used to infer the risk of impact on biodiversity. Maps are performed by 1) computing the emitted noise levels from ships, 2) propagating the acoustic signal in the environment and 3) using localized measurements to validate the results. Because of mismatches in environmental data and a limited number of measurements, noise maps remain highly uncertain.</p><p>In this work, the uncertainty of the noise maps is investigated through the potential complexity of soundscape. The acoustic signal at each receiving cell is computed from the convolution of the source of the ships by the transmission losses of the environment. Complexity is mapped by computing Shannon's entropy of the transmission losses for each receiver. High entropy areas only reflect high shipping densities and favorable acoustic propagation properties of the local environment. Low entropy areas reflect: low shipping density and/or poor acoustic propagation properties. An area with high shipping densities and poor acoustic propagation properties will still have low entropy values.</p><p>Entropy maps allow classifying areas depending on their environmental features. Thus, scenarios of uncertainty are defined. Results highlight the necessity to consider the diversity of the environmental properties in support of the production of noise maps. The methodology could help in optimizing spatial and temporal resolution of map computations, as well as optimizing acoustic monitoring strategies.</p>


Author(s):  
E. M. Farella ◽  
A. Torresani ◽  
F. Remondino

<p><strong>Abstract.</strong> This work presents an extended photogrammetric pipeline aimed to improve 3D reconstruction results. Standard photogrammetric pipelines can produce noisy 3D data, especially when images are acquired with various sensors featuring different properties. In this paper, we propose an automatic filtering procedure based on some geometric features computed on the sparse point cloud created within the bundle adjustment phase. Bad 3D tie points and outliers are detected and removed, relying on micro and macro-clusters analyses. Clusters are built according to the prevalent dimensionality class (1D, 2D, 3D) assigned to low-entropy points, and corresponding to the main linear, planar o scatter local behaviour of the point cloud. While the macro-clusters analysis removes smallsized clusters and high-entropy points, in the micro-clusters investigation covariance features are used to verify the inner coherence of each point to the assigned class. Results on heritage scenarios are presented and discussed.</p>


Author(s):  
Prashant Singh ◽  
Duane D. Johnson

AbstractOrder–disorder transformations hold an essential place in chemically complex high-entropy ferritic steels (HEFSs) due to their critical technological application. The chemical inhomogeneity arising from mixing of multi-principal elements of varying chemistry can drive property altering changes at the atomic scale, in particular short-range order. Using density-functional theory-based linear-response theory, we predict the effect of compositional tuning on the order–disorder transformation in ferritic steels—focusing on Cr–Ni–Al–Ti–Fe HEFSs. We show that Ti content in Cr–Ni–Al–Ti–Fe solid solutions can be tuned to modify short-range order that changes the order–disorder path from BCC-B2 (Ti atomic-fraction = 0) to BCC-B2-L21 (Ti atomic-fraction > 0) consistent with existing experiments. Our study suggests that tuning degree of SRO through compositional variation can be used as an effective means to optimize phase selection in technologically useful alloys. Graphic abstract


Sign in / Sign up

Export Citation Format

Share Document