Embedded Metamaterial Subframe Patch for Increased Power Output of Piezoelectric Energy Harvesters

Author(s):  
Saman Farhangdoust ◽  
Gary Georgeson ◽  
Jeong-Beom Ihn ◽  
Armin Mehrabi

Abstract These days, piezoelectric energy harvesting (PEH) is introduced as one of the clean and renewable energy sources for powering the self-powered sensors utilized for wireless condition monitoring of structures. However, low efficiency is the biggest drawback of the PEHs. This paper introduces an innovative embedded metamaterial subframe (MetaSub) patch as a practical solution to address the low throughput limitation of conventional PEHs whose host structure has already been constructed or installed. To evaluate the performance of the embedded MetaSub patch (EMSP), a cantilever beam is considered as the host structure in this study. The EMSP transfers the auxetic behavior to the piezoelectric element (PZT) wherever substituting a regular beam with an auxetic beam is either impracticable or suboptimal. The concept of the EMSP is numerically validated, and the COMSOL Multiphysics software was employed to investigate its performance when a cantilever beam is subjected to different amplitude and frequency. The FEM results demonstrate that the harvesting power in cases that use the EMSP can be amplified up to 5.5 times compared to a piezoelectric cantilever energy harvester without patch. This paper opens up a great potential of using EMSP for different types of energy harvesting systems in biomedical, acoustics, civil, electrical, aerospace, and mechanical engineering applications.

Author(s):  
Virgilio J Caetano ◽  
Marcelo A Savi

Energy harvesting from ambient vibration through piezoelectric devices has received a lot of attention in recent years from both academia and industry. One of the main challenges is to develop devices capable of adapting to diverse sources of environmental excitation, being able to efficiently operate over a broadband frequency spectrum. This work proposes a novel multimodal design of a piezoelectric energy harvesting system to harness energy from a wideband ambient vibration source. Circular-shaped and pizza-shaped designs are employed as candidates for the device, comparing their performance with classical beam-shaped devices. Finite element analysis is employed to model system dynamics using ANSYS Workbench. An optimization procedure is applied to the system aiming to seek a configuration that can extract energy from a broader frequency spectrum and maximize its output power. A comparative analysis with conventional energy harvesting systems is performed. Numerical simulations are carried out to investigate the harvester performances under harmonic and random excitations. Results show that the proposed multimodal harvester has potential to harness energy from broadband ambient vibration sources presenting performance advantages in comparison to conventional single-mode energy harvesters.


2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Hongjun Zhu ◽  
Tao Tang ◽  
Huohai Yang ◽  
Junlei Wang ◽  
Jinze Song ◽  
...  

Flow-induced vibration (FIV) is concerned in a broad range of engineering applications due to its resultant fatigue damage to structures. Nevertheless, such fluid-structure coupling process continuously extracts the kinetic energy from ambient fluid flow, presenting the conversion potential from the mechanical energy to electricity. As the air and water flows are widely encountered in nature, piezoelectric energy harvesters show the advantages in small-scale utilization and self-powered instruments. This paper briefly reviewed the way of energy collection by piezoelectric energy harvesters and the various measures proposed in the literature, which enhance the structural vibration response and hence improve the energy harvesting efficiency. Methods such as irregularity and alteration of cross-section of bluff body, utilization of wake flow and interference, modification and rearrangement of cantilever beams, and introduction of magnetic force are discussed. Finally, some open questions and suggestions are proposed for the future investigation of such renewable energy harvesting mode.


Author(s):  
Andrew Truitt ◽  
S. Nima Mahmoodi

Piezoelectric energy harvesters have recently captured a lot of attention in research and technology. They employ the piezoelectric effect, which is the separation of charge within a material as a result of an applied strain, to turn what would otherwise be wasted energy into usable energy. This energy can then be used to support remote sensing systems, batteries, and other types of wireless MEMS devices. Such self powered systems are particularly attractive where hardwiring may not be feasible or numerous battery sources unreasonable. The source of excitation for these systems can include direct actuation, natural or mechanical vibrations, or fluid energy (aerodynamic or hydrodynamic). Fluid based energy harvesting is increasingly pursued due to the ubiquitous nature of the excitation source as well as the strong correlation with other types of excitation. Vortex-induced vibrations as well as vibrations induced by bluff bodies have been investigated to determine potential gains. The shape and size of these bluff bodies has been modeled in order to achieve the maxim power potential of the system. Other studies have focused on aeroelastic fluttering which relies on the natural frequency of two structural modes being achieved through aerodynamic forces. Rather than a single degree of freedom, as seen in the VIV approach, aeroelastic flutter requires two degrees of freedom to induce its vibrational state. This has been modeled through a wing section attached to a cantilevered beam via a revolute joint. To accurately model the behavior of these systems several types of dampening must be considered. Fluid flow excitation introduces the component of dampening via fluid dynamics in addition to structural dampening and electrical dampening from the piezoelectrics themselves. Air flow speed modifies the aerodynamic dampening and it has been shown that at the flutterer boundary the aerodynamic dampening dissipates while the oscillations remain. However, such a system state exhibits a decaying power output due to the shunt dampening effect of the power generation itself. Research in energy harvesting is quickly progressing but much has yet to be discovered. The focus of this paper will be fluid as a source of excitation and the development that has followed thus far. Configurations and applications of previous works will be examined followed by suggestions of new research works to move forward in the field.


Energies ◽  
2018 ◽  
Vol 11 (7) ◽  
pp. 1850 ◽  
Author(s):  
Hassan Elahi ◽  
Marco Eugeni ◽  
Paolo Gaudenzi

From last few decades, piezoelectric materials have played a vital role as a mechanism of energy harvesting, as they have the tendency to absorb energy from the environment and transform it to electrical energy that can be used to drive electronic devices directly or indirectly. The power of electronic circuits has been cut down to nano or micro watts, which leads towards the development of self-designed piezoelectric transducers that can overcome power generation problems and can be self-powered. Moreover, piezoelectric energy harvesters (PEHs) can reduce the need for batteries, resulting in optimization of the weight of structures. These mechanisms are of great interest for many researchers, as piezoelectric transducers are capable of generating electric voltage in response to thermal, electrical, mechanical and electromagnetic input. In this review paper, Fluid Structure Interaction-based, human-based, and vibration-based energy harvesting mechanisms were studied. Moreover, qualitative and quantitative analysis of existing PEH mechanisms has been carried out.


2016 ◽  
Vol 25 (12) ◽  
pp. 1650164 ◽  
Author(s):  
Jingmin Wang ◽  
Zheng Yang ◽  
Zhangming Zhu ◽  
Yintang Yang

A high efficiency self-powered rectifier for piezoelectric (PE) energy harvesting systems is proposed. The rectifier in this paper increases the harvested power from the PE transducer by using two switches to reset the transducer capacitor when appropriate. The control circuit for the proposed rectifier is simple and does not require an external supply voltage. Furthermore, the passive diode of the conventional full-bridge (FB) rectifier is replaced by active diode to reduce the voltage drop along the conduction path and thereby increases the power extraction and conversion capability. Based on SMIC 0.18[Formula: see text][Formula: see text]m standard CMOS technology, the simulation results show the voltage conversion efficiency can reach up to 98.9% and the maximum power efficiency is 93.1% when the input current source [Formula: see text]A in parallel with internal capacitor [Formula: see text][Formula: see text]nF and internal resistor [Formula: see text][Formula: see text]M[Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document