scholarly journals Energy, Exergy, and Emission Analysis on Industrial Air Compressors

2021 ◽  
pp. 1-34
Author(s):  
Farah Nazifa Nourin ◽  
Juan Espindola ◽  
Osama M. Selim ◽  
Ryoichi S. Amano

Abstract Air compressors, a key fluid power technology, play an important role not only in industrial plants but also in office buildings, hospitals, and other types of facilities. The efficient use of the air compressor is crucial to control unnecessary inefficiencies that cause high energy consumption. This study aims to provide energy and exergy analysis on air compressors for different industries. Detailed case studies are also analyzed. The case study focuses on the energy and exergy analysis of the compressed air system of foundry industries. The results indicate that applying the six improvement recommendations yield significant amounts of energy and cost savings as well as significant improvements in the overall performance of the system. The payback periods for different recommendations are economically feasible and worthwhile to use. The suggested improvement methods can provide high costs with a low payback period.

2015 ◽  
Vol 18 (2) ◽  
pp. 82 ◽  
Author(s):  
Francesco Baldi ◽  
Hannes Johnson ◽  
Cecilia Gabrielii ◽  
Karin Andersson

Author(s):  
Edgardo Olivares Gómez ◽  
Renato Cruz Neves ◽  
Elisa Magalhães de Medeiros ◽  
Mylene Cristina Alves Ferreira Rezende

In recent years, attention has focused on exergy analysis, a type of thermodynamic analysis which is an important tool for the efficiency assessment and the processes optimization when dealing with energy conversion and, particularly, thermochemical processes such as gasification. Thus, this chapter aims to introduce the fundamental concepts of energy and exergy and describe the energy and exergy evaluation tools, elucidating its importance for calculations applied to gasification processes. A case study was performed to show the proposal of energy and exergy analysis. Therefore, a single global gasification chemical reaction was used to represent the gasification process. This analysis can provide a tool to assess and develop models, simulations, calculations, and to optimize real gasification processes. Information and experiences covered in this chapter help to be put into perspective the technology, research and overcoming of challenges.


2017 ◽  
pp. 1613-1646
Author(s):  
Edgardo Olivares Gómez ◽  
Renato Cruz Neves ◽  
Elisa Magalhães de Medeiros ◽  
Mylene Cristina Alves Ferreira Rezende

In recent years, attention has focused on exergy analysis, a type of thermodynamic analysis which is an important tool for the efficiency assessment and the processes optimization when dealing with energy conversion and, particularly, thermochemical processes such as gasification. Thus, this chapter aims to introduce the fundamental concepts of energy and exergy and describe the energy and exergy evaluation tools, elucidating its importance for calculations applied to gasification processes. A case study was performed to show the proposal of energy and exergy analysis. Therefore, a single global gasification chemical reaction was used to represent the gasification process. This analysis can provide a tool to assess and develop models, simulations, calculations, and to optimize real gasification processes. Information and experiences covered in this chapter help to be put into perspective the technology, research and overcoming of challenges.


Author(s):  
Muslizainun Mustapha ◽  
Ahmad Fudholi ◽  
Chan Hoy Yen ◽  
Mohd Hafidz Ruslan ◽  
Kamaruzzaman Sopian

<p class="AEuroAbstract">In photovoltaic thermal hybrid (PV/T) collectors, the electricity and thermal energy are produce simultaneously. PV/T technology has been proven in previous studies where it could give benefits for high energy demand supplementary. For example, in space heating, domestic water heating and also drying. The PVT collectors can be classified into air-based PVT, water-based PVT and dual-fluid (air+water) PVT collector. In this paper, the analysis of energy and exergy efficiency of PVT collectors are compiled and reviewed. This study has found that generally the energy and exergy efficiency are range from 40%-70% and 5%-20%, respectively.</p>


Sign in / Sign up

Export Citation Format

Share Document