Techno-economic Analysis of a Hydrogen Production and Storage System for the On-site Fuel Supply of Hydrogen-fired Gas Turbines

Author(s):  
Thomas Bexten ◽  
Tobias Sieker ◽  
Manfred Wirsum

Abstract Hydrogen-fired gas turbines have the potential to play an important role in future CO2-neutral energy and industry sectors. A prerequisite for the operation of hydrogen-fired gas turbines is the availability of sufficient quantities of hydrogen. The combination of electrolysis and renewable power generation is currently considered the most relevant pathway for the large-scale production of CO2-neutral hydrogen. Regarding the fuel supply of hydrogen-fired gas turbines, this pathway is associated with various technical and economic challenges. This applies in particular to configurations in which electrolyzers and hydrogen storage capacities are installed directly at gas turbine sites to avoid hydrogen transport. Considering an exemplary system configuration, the present study extends prior model-based investigations by focusing on the economic viability of the on-site fuel supply of hydrogen-fired gas turbines. The impact of various design parameters and operational strategies is analyzed using the Levelized Cost of Hydrogen as the main economic indicator. The study reveals that the investigated on-site hydrogen production is not economically viable within the current (2019) framework of the German energy sector. Assuming the extensive availability of renewable power generation in the long-term, additional investigations indicate that on-site hydrogen production and storage systems for gas turbines could potentially become economically viable if various advantageous conditions are met. These conditions include a sufficient availability of inexpensive renewable power for the operation of electrolyzers as well as a sufficient utilization of on-site hydrogen storage capacities to justify corresponding capital expenditures.

2021 ◽  
Author(s):  
Thomas Bexten ◽  
Tobias Sieker ◽  
Manfred Wirsum

Abstract Hydrogen-fired gas turbines have the potential to play an important role in future CO2-neutral energy and industry sectors. A prerequisite for the operation of hydrogen-fired gas turbines is the availability of sufficient quantities of hydrogen. The combination of electrolysis and renewable power generation is currently considered the most relevant pathway for the large-scale production of CO2-neutral hydrogen. Regarding the fuel supply of hydrogen-fired gas turbines, this pathway is associated with various technical and economic challenges. This applies in particular to configurations in which electrolyzers and hydrogen storage capacities are installed directly at gas turbine sites to avoid hydrogen transport. Considering an exemplary system configuration, the present study extends prior model-based investigations by focusing on the economic viability of the on-site fuel supply of hydrogen-fired gas turbines. The impact of various design parameters and operational strategies is analyzed using the Levelized Cost of Hydrogen as the main economic indicator. The study reveals that the investigated on-site hydrogen production is not economically viable within the current (2019) framework of the German energy sector. Assuming the extensive availability of renewable power generation in the long-term, additional investigations indicate that on-site hydrogen production and storage systems for gas turbines could potentially become economically viable if various advantageous conditions are met. These conditions include a sufficient availability of inexpensive renewable power for the operation of electrolyzers as well as a sufficient utilization of on-site hydrogen storage capacities to justify corresponding capital expenditures.


Author(s):  
Thomas Bexten ◽  
Manfred Wirsum ◽  
Björn Roscher ◽  
Ralf Schelenz ◽  
Georg Jacobs

Abstract Hydrogen-fired gas turbines have the potential to play an important role in decarbonized energy sectors. However, a demand-oriented supply of CO2-neutral hydrogen for the operation of gas turbines is technically and economically challenging. These challenges mainly arise due to various interdependencies between the volatility of renewable power generation, available hydrogen production capacities, available hydrogen storage capacities and the operational demands to be met by gas turbines. The present study aims to quantify these interdependencies by conducting a detailed model-based analysis of an exemplary combined heat and power system featuring a hydrogen-fired industrial gas turbine with on-site hydrogen production via electrolysis and on-site hydrogen storage in pressure vessels. In order to identify the sought-after interdependencies, simulation runs featuring various combinations of available hydrogen production and storage capacities are analyzed. If only local power surpluses are utilized for the electrolysis, the obtained results reveal a strong non-linear impact of both the hydrogen production capacity and the storage capacity on the ability to provide hydrogen for the gas turbine. Furthermore, the results indicate that an exclusive utilization of local power surpluses leads to very limited periods of hydrogen-based gas turbine operation and low utilization rates of the available hydrogen production and storage capacities. If additional power for the operation of electrolyzers is supplied by the grid, increased utilization rates and prolonged periods of hydrogen-based gas turbine operation can be achieved. However, in order to realize an overall reduction of CO2 emissions, this mode of operation requires the supply of large quantities of renewable power by the grid. Furthermore, the results of an additional economic analysis reveal that both investigated operational modes are currently not economically viable within the considered economic framework.


Author(s):  
Jason John Dennis ◽  
Thomas Bexten ◽  
Nils Petersen ◽  
Manfred Wirsum ◽  
Patrick Preuster

Abstract One of the main challenges currently hindering the transition to energy systems based on renewable power generation is grid stability. To compensate for the volatility of wind- and solar-based power generation, storage facilities able to adapt to seasonal and short term differences in energy production and demand are required. Liquid Organic Hydrogen Carriers (LOHCs) represent a viable method of chemically binding elemental hydrogen, offering opportunities for largescale and safe energy storage. In times of energy shortage, flexible and dispatchable power generation technologies such as gas turbines can be fueled by hydrogen stored in this manner. Hydrogen can be released from its liquid carrier via an endothermic dehydrogenation reaction using waste heat provided by the gas turbine. This gaseous hydrogen can be supplied to the gas turbine combustion chamber using a hydrogen compressor. In the present study a steady state model is developed in order to analyse the heat-integrated combination of a 7.7 MW hydrogen-fired gas turbine and a H18-DBT/H0-DBT LOHC system. For the best-performing parameter set the effective storage density of the LOHC oil comes to 1.5 kWh/L. This value is situated in-between that of compressed hydrogen at 350 bar (1.01 kWh/L) and liquid hydrogen (2.33 kWh/L). Concurrently, the corresponding energy required for hydrogen compression reduces the overall system efficiency to 22.00 % (ηGT = 30.15%). The resulting optimal electricity yield, being a product of these two values, amounts to 0.33 kWhel/L.


Author(s):  
Thomas Bexten ◽  
Manfred Wirsum ◽  
Björn Roscher ◽  
Ralf Schelenz ◽  
Georg Jacobs ◽  
...  

Many energy supply systems around the world are currently undergoing a phase of transition characterized by a continuing increase in installed renewable power generation capacities. The inherent volatility and limited predictability of renewable power generation pose various challenges for an efficient system integration of these capacities. One approach to manage these challenges is the deployment of small-scale dispatchable power generation and storage units on a local level. In this context, gas turbine cogeneration units, which are primarily tasked with the provision of power and heat for industrial consumers, can play a significant role, if they are equipped with a sufficient energy storage capacity allowing for a more flexible operation. The present study investigates a system configuration, which incorporates a heat-driven industrial gas turbine interacting with a wind farm providing volatile renewable power generation. The required energy storage capacity is represented by an electrolyzer and a pressure vessel for intermediate hydrogen storage. The generated hydrogen can be reconverted to electricity and process heat by the gas turbine. The corresponding operational strategy for the overall system aims at an optimal integration of the volatile wind farm power generation on a local level. The study quantifies the impact of selected system design parameters on the quality of local wind power system integration, that can be achieved with a specific set of parameters. In addition, the impact of these parameters on the reduction of CO2 emissions due to the use of hydrogen as gas turbine fuel is quantified. In order to conduct these investigations, detailed steady-state models of all required system components were developed. These models enable accurate simulations of the operation of each component in the complete load range. The calculation of the optimal operational strategy is based on an application of the dynamic programming algorithm. Based on this model setup, the operation of the overall system configuration is simulated for each investigated set of design parameters for a one-year period. The simulation results show that the investigated system configuration has the ability to significantly increase the level of local wind power integration. The parameter variation reveals distinct correlations between the main design parameters of the storage system and the achievable level of local wind power integration. Regarding the installed electrolyzer power consumption capacity, smaller additional benefits of capacity increases can be identified at higher levels of power consumption capacity. Regarding the geometrical volume of the hydrogen storage, it can be determined that the storage volume loses its limiting character on the operation of the electrolyzer at a characteristic level. The additional investigation of the CO2 emission reduction reveals a direct correlation between the level of local wind power integration and the achievable level of CO2 emission reduction.


Author(s):  
Thomas Bexten ◽  
Sophia Jörg ◽  
Nils Petersen ◽  
Manfred Wirsum ◽  
Pei Liu ◽  
...  

Abstract Climate science shows that the limitation of global warming requires a rapid transition towards net-zero emissions of greenhouse gases (GHG) on a global scale. Expanding renewable power generation is seen as an imperative measure within this transition. To compensate for the inherent volatility of renewable power generation, flexible and dispatchable power generation technologies such as gas turbines are required. If operated with CO2-neutral hydrogen or in combination with carbon capture plants, a GHG-neutral gas turbine operation could be achieved. An effective leverage to enhance carbon capture efficiency and a possible measure to safely burn hydrogen in gas turbines is the partial external recirculation of exhaust gas. By means of a model-based analysis of a gas turbine, the present study initially assesses the thermodynamic impact caused by a fuel switch from natural gas to hydrogen. Although positive trends such as increasing net electrical power output and thermal efficiency can be observed, the overall effect on the gas turbine process is only minor. In a following step, the partial external recirculation of exhaust gas is evaluated and compared both for the combustion of natural gas and hydrogen, regardless of potential combustor design challenges. The influence of altering working fluid properties throughout the whole gas turbine process is thermodynamically evaluated for ambient temperature recirculation and recirculation at an elevated temperature. A reduction in thermal efficiency can be observed as well as non-negligible changes of relevant process variables. These changes are more distinctive at a higher recirculation temperature


Author(s):  
Thomas Bexten ◽  
Manfred Wirsum ◽  
Björn Roscher ◽  
Ralf Schelenz ◽  
Georg Jacobs

Abstract Hydrogen-fired gas turbines can play an important role in carbon neutral energy and industry sectors. However, the required demand-oriented supply of CO2-neutral hydrogen is technically and economically challenging. These challenges arise due to interdependencies between the volatility of renewable power generation, available hydrogen production capacities, available hydrogen storage capacities and the operational demands to be met by gas turbines. The present study aims to quantify these interdependencies by conducting a model-based analysis of an exemplary CHP system featuring a hydrogen-fired industrial gas turbine with on-site hydrogen production via electrolysis and on-site hydrogen storage. To identify the sought-after interdependencies, simulation runs featuring various system parameterizations are analyzed. If only local power surpluses are utilized for the operation of electrolyzers, the results show a non-linear impact of both the hydrogen production capacity and the hydrogen storage capacity on the hydrogen-based gas turbine operation. Furthermore, the results indicate that an exclusive utilization of local power surpluses leads to limited periods of hydrogen-based gas turbine operation. If additional power for the operation of electrolyzers is supplied by the grid, prolonged periods of hydrogen-based gas turbine operation can be achieved. However, to realize an overall reduction of CO2 emissions, this mode of operation requires the supply of large quantities of renewable power by the grid. The results of an additional economic assessment reveal that both investigated operational modes are not economically viable within the considered economic framework.


2020 ◽  
Vol 59 (16) ◽  
pp. 7706-7721 ◽  
Author(s):  
C. Doga Demirhan ◽  
William W. Tso ◽  
Joseph B. Powell ◽  
Clara F. Heuberger ◽  
Efstratios N. Pistikopoulos

Author(s):  
Thomas Bexten ◽  
Manfred Wirsum ◽  
Björn Roscher ◽  
Ralf Schelenz ◽  
Georg Jacobs ◽  
...  

Many energy supply systems around the world are currently undergoing a phase of transition characterized by a continuing increase in installed renewable power generation capacities. The inherent volatility and limited predictability of renewable power generation pose various challenges for an efficient system integration of these capacities. One approach to manage these challenges is the deployment of small-scale dispatchable power generation and storage units on a local level. In this context, gas turbine cogeneration units, which are primarily tasked with the provision of power and heat for industrial consumers, can play a significant role if they are equipped with a sufficient energy storage capacity allowing for a more flexible operation. The present study investigates a system configuration which incorporates a heat-driven industrial gas turbine interacting with a wind farm providing volatile renewable power generation. The required energy storage capacity is represented by an electrolyzer and a pressure vessel for intermediate hydrogen storage. The generated hydrogen can be reconverted to electricity and process heat by the gas turbine. The corresponding operational strategy for the overall system aims at an optimal integration of the volatile wind farm power generation on a local level. The study quantifies the impact of selected system design parameters on the quality of local wind power system integration that can be achieved with a specific set of parameters. In addition, the impact of these parameters on the reduction of CO2 emissions due to the use of hydrogen as gas turbine fuel is quantified. In order to conduct these investigations, detailed steadystate models of all required system components were developed. These models enable accurate simulations of the operation of each component in the complete load range. The calculation of the optimal operational strategy is based on an application of the Dynamic Programming algorithm. Based on this model setup, the operation of the overall system configuration is simulated for each investigated set of design parameters for a one-year period. The simulation results show that the investigated system configuration has the ability to significantly increase the level of local wind power integration. The parameter variation reveals distinct correlations between the main design parameters of the storage system and the achievable level of local wind power integration. Regarding the installed electrolyzer power consumption capacity, smaller additional benefits of capacity increases can be identified at higher levels of power consumption capacity. Regarding the geometrical volume of the hydrogen storage, it can be determined that the storage volume loses its limiting character on the operation of the electrolyzer at a characteristic level. The additional investigation of the CO2 emission reduction reveals a direct correlation between the level of local wind power integration and the achievable level of CO2 emission reduction.


Sign in / Sign up

Export Citation Format

Share Document