Stratified Shear-Thinning Fluid Flow Past Tandem Cylinders in the Presence of Mixed Convection Heat Transfer with a Channel-Confined Configuration

Author(s):  
Ajay Raj Dwivedi ◽  
Amit Dhiman ◽  
Aniruddha Sanyal

Abstract The article examines the consequence of thermal buoyancy-driven cross-flow and heat transfer for shear-thinning power-law fluids on the tandem orientation of two cylinders. Finite volume methodology is used to investigate the effect of the gap ratio (2.5 ≤ S/D ≤ 5.5), power-law index (0.2 ≤ n ≤ 1) and Richardson number (0 ≤ Ri ≤ 1) on flow and thermal output parameters at Reynolds number Re ≤ 100 and Prandtl number Pr ≤ 50 in a confined channel. An unprecedented jump has been witnessed in the flow/thermal parameters at the critical gap ratio (critical spacing). At forced convection (Ri ≤ 0), this critical spacing keeps on increasing with shear-thinning character, from S/D = 3.9 (at n = 1) to 4.9 (at n = 0.2). On the contrary, an increase in shear-thinning characteristic leads to a decrease in critical spacing from S/D = 3.9 (at n = 1) to 2.8 (at n = 0.4) for Ri = 1 (mixed convection). The heat transfer rate increases with shear-thinning behavior, with a maximum heat transfer, noted at n = 0.2. A higher unprecedented increment for flow/thermal parameters is seen at critical spacing for the downstream cylinder than the upstream cylinder. At the highest gap ratio, the output parameters for the upstream cylinder approximate that of an isolated cylinder. The time-variant fluctuations in lift coefficients for a shear-thinning flow in a tandem arrangement provide a new understanding of co-shedding and extended body flow regimes.

Author(s):  
N. Anjaiah ◽  
A. K. Dhiman ◽  
R. P. Chhabra

Laminar mixed convection flow and heat transfer to power-law fluids from a square cylinder has been analyzed numerically in the steady flow regime. The full momentum and energy equations along with the Boussinesq approximation have been solved by using a SMAC implicit finite difference method implemented on an uniform staggered grid arrangement for the range of Reynolds number 5 to 40, power-law index 0.6 to 1.4, Prandtl number 1 to 10 and Richardson number 0 to 0.5 in both bounded and unbounded flow configurations. The wall effects have been studied for a fixed blockage ratio of 1/15. The effects of buoyancy on the flow and heat transfer characteristics of power-law fluids have been elucidated. It is found that the mixed convection can initiate an asymmetry in the flow and temperature fields even within the steady flow regime. The variation of drag coefficients, and of the Nusselt number have been reported for a range of values of the Reynolds number, Prandtl number and Richardson number for both shear thickening and shear thinning fluids.


2017 ◽  
Vol 21 (5) ◽  
pp. 2205-2215
Author(s):  
Ehsan Sourtiji ◽  
Mofid Gorji-Bandpy

A numerical study of mixed convection flow and heat transfer inside a square cavity with inlet and outlet ports is performed. The position of the inlet port is fixed but the location of the outlet port is varied along the four walls of the cavity to investigate the best position corresponding to maximum heat transfer rate and minimum pressure drop in the cavity. It is seen that the overall Nusselt number and pressure drop coefficient vary drastically depending on the Reynolds and Richardson numbers and the position of the outlet port. As the Richardson number increases, the overall Nusselt number generally rises for all cases investigated. It is deduced that placing the outlet port on the right side of the top wall is the best position that leads to the greatest overall Nusselt number and lower pressure drop coefficient. Finally, the effects of nanoparticles on heat transfer are investigated for the best position of the outlet port. It is found that an enhancement of heat transfer and pressure drop is seen in the presence of nanoparticles and augments with solid volume fraction of the nanofluid. It is also observed that the effects of nanoparticles on heat transfer at low Richardson numbers is more than that of high Richardson numbers. <br><br><font color="red"><b> This article has been retracted. Link to the retraction <u><a href="http://dx.doi.org/10.2298/TSCI190625278E">10.2298/TSCI190625278E</a><u></b></font>


1989 ◽  
Vol 111 (2) ◽  
pp. 399-406 ◽  
Author(s):  
A. Lawal

An analytical investigation of three-dimensional mixed convection flow and heat transfer to power-law fluids in horizontal arbitrary cross-sectional ducts is undertaken. The continuity equation and parabolic forms of the energy and momentum equations in rectangular coordinates are transformed into new orthogonal coordinates with the boundaries of the duct coinciding with the coordinate surfaces. The transformed equations are solved by the finite difference technique. The fluid enters the duct with constant velocity and temperature profiles with the wall of the duct subjected to constant temperature. Local heat transfer coefficients and pressure drop for several values of Gr/Re and power-law index n are computed for the triangular, square, trapezoidal, pentagonal, and circular ducts. The buoyancy force is found to increase both the Nusselt number and the pressure drop.


2002 ◽  
Vol 124 (6) ◽  
pp. 1064-1071
Author(s):  
Bassam A/K Abu-Hijleh

The problem of laminar mixed convection from an isothermal cylinder with low conductivity baffles in cross flow was solved numerically. The average Nusselt number was calculated at different combinations of number of baffles, baffle height, Reynolds number, and buoyancy parameter. The reduction in the Nusselt number is as much as 75 percent. When using a small number of baffles at low values of buoyancy parameter, an odd number of baffles reduced the Nusselt number more than an even number of baffles, especially at high values of Reynolds number. This is not the case at high values of buoyancy parameter. There is an optimal baffle height, Reynolds number dependent, for maximum heat transfer reduction beyond which an increase in baffle height does not result in further decrease in heat transfer.


Sign in / Sign up

Export Citation Format

Share Document