Microflow-Enhanced Bubble Dynamics Along with Gradient Porous Surfaces

Author(s):  
Cheng-Hui Lin ◽  
Yoonjin Won

Abstract Boiling heat transfer has been a popular topic for decades because of its ability to remove a significant amount of thermal energy while maintaining a low wall superheat during the liquid phase change. Such boiling mechanisms can be tailored by engineering new boiling substrates through surface wettability modification and/or microscale feature installation. Here, we create new types of heterogeneous boiling surfaces that integrate vertical gradient micropores on macroscale fins by using a template-free electrodeposition method. The gradient morphology and corresponding gradient wettability simultaneously enable bubble nucleation on the top pores and capillary wicking through the bottom pores. With these unique wetting characteristics, we find that the gradient pores installed at the trench bottom demonstrate the most significant boiling enhancement in critical heat flux and heat transfer coefficients by 160% and 600%, respectively. This enhancement can be attributed to the microflow-enhanced nature of bubble departures around the fins while isolating bubble nucleation and liquid supply through gradient pores. These results provide fundamental insights into boiling mechanisms using porous media and the potential for future works that can optimize the design of multi-dimensional heterogeneous surfaces to engineer flow patterns and boiling mechanisms accordingly.

2008 ◽  
Author(s):  
T. P. Lagus ◽  
F. A. Kulacki

Heat transfer coefficients and bubble dynamics are reported for two-phase water flow in an array of 13 equally spaced microchannels over an area of 1 cm2. Each channel has Dh = 451 ± 3 8 μm, W/H = 0.8, and L/Dh = 22.2. Uniform heat flux is applied through the base, and wall temperatures are determined from thermocouple readings corrected for heat conduction effects. The upper surface is insulated and transparent. Single-phase heat transfer coefficients are obtained for 216 < Re < 2530 and 216 < G < 4100 kg/m2s and are in good agreement with comparable trends of existing correlations for developing flow and heat transfer, although a difference is seen due to the insulated upper surface. Two-phase experiments are run to determine overall heat transfer coefficients and bubble dynamics for a mass flux of 221 < G < 466 kg/sm2 and heat flux of 25 < q < 178 W/cm2. Heat transfer coefficients normalized with mass flux exhibit a trend comparable to that of available studies that use similar thermal boundary conditions. Two-phase flow visualization via shows expanding vapor slug flow as the primary flow regime, but bubbly flow and nucleation leading to elongated bubble flow are also observed. Analysis of bubble dynamics reveals a t1/3 dependence for bubble growth, and flow reversal is observed and quantified. Different speeds of the phase fronts are observed at the leading and trailing edges of elongated slugs once a bubble diameter equals the channel width. Bubble formation, growth, coalescence and detachment at the outlet of the array are characterized by the Weber number.


Author(s):  
Shalabh C. Maroo ◽  
J. N. Chung

Evaporation of a nanoscale meniscus on a nano-structured heater surface is simulated using molecular dynamics. The nanostructures are evenly spaced on the surface and rectangular-shaped with a length and height of 0.41 nm and 0.96 nm respectively, and stretching throughout the width of the domain. The simulation results show that the film breaks during the early stages of evaporation due to the presence of nanostructures and no non-evaporating film forms (unlike a previous simulation performed in absence of nanostructures where non-evaporating film forms on the smooth surface). High heat transfer and evaporation rates are obtained. We conclude that heat transfer rates can be significantly increased during bubble nucleation and growth by the presence of nanostructures on the surface as it breaks the formation of non-evaporating film. This will cause additional chaos and allow the surrounding cooler liquid to come in contact with the surface enhancing heat transfer coefficients.


Author(s):  
Mehmed Rafet Özdemir ◽  
Alihan Kaya ◽  
Ali Koşar

In this article, an experimental study on boiling heat transfer and fluid flow in microtubes at high mass fluxes is presented. De-ionized water flow was investigated over a broad range of mass flux (1000 kg/m2s–7500 kg/m2s) in microtubes with inner diameters of  ∼ 250 μm and ∼685 μm. The reason for using two different capillary diameters was to investigate the size effect on flow boiling. De-ionized water was used as working fluid, and the test section was heated by Joule heating. Heat transfer coefficients and qualities were deduced from local temperature measurements. It was found that high heat removal rates could be achieved at high flow rates under subcooled boiling conditions. It was also observed that heat transfer coefficients increased with mass flux, whereas they decreased with local quality and heat flux. Moreover, experimental heat flux data were compared with partial boiling correlations and fully developed boiling correlations. It was observed that at low wall superheat values, there was only a small inconsistency between the experimental data and the conventional partial boiling prediction method of Bergles, while the subcooled and low quality fully developed boiling heat transfer correlation of Kandlikar could fairly predict experimental results at high wall superheat values.


Author(s):  
Jorge Padilla ◽  
Van P. Carey

This paper summarizes results of an experimental exploration of heat transfer during vaporization of a water droplet deposited on a superhydrophilic nanostructured surface at high and low superheat conditions. The superhydrophilic surface is composed of a vast array of zinc oxide (ZnO) nanostructures grown by hydrothermal synthesis on a smooth copper substrate. The individual nanostructures are randomly-oriented and have a mean diameter of about 400 nm, a mean length of 2 μm and a mean centerline spacing of about 700 nm. The macroscopic wetting characteristics of the surface were measured and scanning electron microscope imaging was used to document the nanoscale features of the surface before and after the experiments. These surfaces typically exhibited water contact angles less than 5 degrees. In single droplet deposition experiments at atmospheric pressure, a high-speed video camera was used to document the droplet-surface interaction, and the heat transfer coefficients were simultaneously determined from thermal measurements in the test apparatus. At low superheat levels (10–20°C), droplets spread rapidly over the heated surface when deposited. For these conditions, no bubble nucleation was observed, and we nevertheless observed extremely high heat transfer coefficients resulting from rapid evaporation of the thin liquid film formed by the spreading droplet. At high wall superheat levels, the vaporization process exhibited Leidenfrost droplet vaporization. The extreme wetting for these surfaces resulted in extremely high Leidenfrost transition temperatures. The results document a trend of increasing Leidenfrost temperature with decreasing contact angle, which is consistent with earlier studies. The results of this study are compared with early work in this area and the implications for applications are discussed.


Author(s):  
Evelyn N. Wang ◽  
Juan G. Santiago ◽  
Kenneth E. Goodson ◽  
Thomas W. Kenny

The large heat generation rates in contemporary microprocessors require new thermal management solutions. Two-phase microjet impingement cooling promises high heat transfer coefficients and effective cooling of hotspots. We have fabricated integrated microjet structures with heaters and temperature sensors to study local heat transfer at the impingement surface of a confined microjet. Circular jets with diameters less than 100 μm are machined in glass. Preliminary temperature measurements (for Rej = 100–500) suggest that heat transfer coefficients of 1000 W/m2C close to the jet stagnation zone can be achieved. As the flowrate of the jet is increased, a tradeoff in heat removal capability and wall superheat is observed. To aid in understanding the mechanism for wall superheat during boiling at the heated surface, the devices allow for optical access through the top of the device. However, the formation of vapor from the top reservoir makes visualization difficult. This study aids in the design of microjet heat sinks used for integration into a closed-loop cooling system.


Sign in / Sign up

Export Citation Format

Share Document