Wind Energy ◽  
2013 ◽  
Vol 17 (11) ◽  
pp. 1727-1736 ◽  
Author(s):  
Ali Al-Abadi ◽  
Özgür Ertunç ◽  
Horst Weber ◽  
Antonio Delgado

Author(s):  
Dries Verstraete ◽  
Kjersti Lunnan

Small unmanned aircraft are currently limited to flight ceilings below 20,000 ft due to the lack of an appropriate propulsion system. One of the most critical technological hurdles for an increased flight ceiling of small platforms is the impact of reduced Reynolds number conditions at altitude on the performance of small radial turbomachinery. The current article investigates the influence of Reynolds number on the efficiency and pressure ratio of two small centrifugal compressor impellers using a one-dimensional meanline performance analysis code. The results show that the efficiency and pressure ratio of the 60 mm baseline compressor at the design rotational speed drops with 6–9% from sea-level to 70,000 ft. The impact on the smaller 20 mm compressor is slightly more pronounced and amounts to 6–10%. Off-design changes at low rotational speeds are significantly higher and can amount to up to 15%. Whereas existing correlations show a good match for the efficiency drop at the design rotational speed, they fail to predict efficiency changes with rotational speed. A modified version is therefore proposed.


2021 ◽  
Author(s):  
A. Hildebrandt ◽  
T. Ceyrowsky ◽  
J. Klausmann ◽  
K. A. Metz

Abstract In the present paper, three centrifugal stages of high volume flow coefficient are compared to each-other regarding their aerodynamic performance in design point and off-design point conditions at different speed and IGV-setting angle: two stages with full-blade design (no splitter blades) have been numerically designed with different design geometry methodology. One geometry is based on a classical ruling surface design with a linear leading edge, the second geometry based on a fully-3d surface including a blade bow at the trailing edge and a barreled sweep at the leading edge. According to impeller test rig measurements and CFD-calculation, the classical ruling surface designed impeller outperforms the more sophisticated centrifugal stage with fully-3D-blade at fully axially guided IGV-flow. In the contrary, at closing IGV-off-design setting angles, towards surge operation, the fully-3D-blade-impeller performs with higher efficiency and steeper negative pressure slope. On the search of the geometrical causes for the different aerodynamic performance (especially at IGV-off-design conditions), focus is set on the analysis of IGV-flow-interaction with the inducer flow, and impeller diffusion. The one-dimensional -analysis of the span-wise flow at the impeller leading edge reveals that, compared with the ruling surface impeller, the fully 3D-blade performs with lower flow incidence losses in favor to IGV-off-design operation than at IGV-neutral position. The stream-wise flow analysis confirms the improved flow incidence characteristics of the 3D-blade impeller due to reduction of aerodynamic blockage and entropy production in the vicinity of the impeller leading edge. Based on CFD-calculations, a new correlation of secondary flow and flow incidence is proposed, to be used for one-dimensional modelling.


Sign in / Sign up

Export Citation Format

Share Document