On the Correlation Between Span-Wise Inducer Incidence and Impeller Diffusion for Ruled Surface and Barreled Sweep-Bow Impeller Design at IGV-Off-Design

2021 ◽  
Author(s):  
A. Hildebrandt ◽  
T. Ceyrowsky ◽  
J. Klausmann ◽  
K. A. Metz

Abstract In the present paper, three centrifugal stages of high volume flow coefficient are compared to each-other regarding their aerodynamic performance in design point and off-design point conditions at different speed and IGV-setting angle: two stages with full-blade design (no splitter blades) have been numerically designed with different design geometry methodology. One geometry is based on a classical ruling surface design with a linear leading edge, the second geometry based on a fully-3d surface including a blade bow at the trailing edge and a barreled sweep at the leading edge. According to impeller test rig measurements and CFD-calculation, the classical ruling surface designed impeller outperforms the more sophisticated centrifugal stage with fully-3D-blade at fully axially guided IGV-flow. In the contrary, at closing IGV-off-design setting angles, towards surge operation, the fully-3D-blade-impeller performs with higher efficiency and steeper negative pressure slope. On the search of the geometrical causes for the different aerodynamic performance (especially at IGV-off-design conditions), focus is set on the analysis of IGV-flow-interaction with the inducer flow, and impeller diffusion. The one-dimensional -analysis of the span-wise flow at the impeller leading edge reveals that, compared with the ruling surface impeller, the fully 3D-blade performs with lower flow incidence losses in favor to IGV-off-design operation than at IGV-neutral position. The stream-wise flow analysis confirms the improved flow incidence characteristics of the 3D-blade impeller due to reduction of aerodynamic blockage and entropy production in the vicinity of the impeller leading edge. Based on CFD-calculations, a new correlation of secondary flow and flow incidence is proposed, to be used for one-dimensional modelling.

2021 ◽  
Vol 144 (2) ◽  
Author(s):  
A. Hildebrandt ◽  
T. Ceyrowsky ◽  
J. Klausmann ◽  
K. A. Metz

Abstract In the present paper, three centrifugal stages of high volume flow coefficient are compared to each-other regarding their aerodynamic performance in design point and off-design point conditions at different speed and inlet guide vane (IGV)-setting angle: two stages with full-blade design (no splitter blades) have been numerically designed with different design geometry methodology. One geometry is based on a classical ruling surface design with a linear leading edge, the second geometry based on a fully-three-dimensional surface including a blade bow at the trailing edge and a barreled sweep at the leading edge. According to impeller test rig measurements and computational fluid dynamics (CFD) calculation, the classical ruling surface designed impeller outperforms the more sophisticated centrifugal stage with fully 3D-blade at fully axially guided IGV-flow. In the contrary, at closing IGV-off-design setting angles, toward surge operation, the fully 3D-blade impeller performs with higher efficiency and steeper negative pressure slope. On the search of the geometrical causes for the different aerodynamic performance (especially at IGV-off-design conditions), focus is set on the analysis of IGV-flow-interaction with the inducer flow and impeller diffusion. The one-dimensional analysis of the spanwise flow at the impeller leading edge reveals that, compared with the ruling surface impeller, the fully 3D-blade performs with lower flow incidence losses in favor to IGV-off-design operation than at IGV-neutral position. The streamwise flow analysis confirms the improved flow incidence characteristics of the 3D-blade impeller due to reduction of aerodynamic blockage and entropy production in the vicinity of the impeller leading edge. Based on CFD calculations, a new correlation of secondary flow and flow incidence is proposed, to be used for one-dimensional modeling.


1975 ◽  
Vol 189 (1) ◽  
pp. 557-565 ◽  
Author(s):  
A. Whitfield ◽  
F. J. Wallace

A procedure to predict the complete performance map of turbocharger centrifugal compressors is presented. This is based on a one-dimensional flow analysis using existing published loss correlations that were available and thermodynamic models to describe the incidence loss and slip factor variation at flow rates which differ from the design point. To predict the losses within the complete compressor stage using a one-dimensional flow procedure, it is necessary to introduce a number of empirical parameters. The uncertainty associated with these empirical parameters is assessed by studying the effect of varying them upon the individual losses and upon the overall predicted performance.


2019 ◽  
Vol 141 (5) ◽  
Author(s):  
A. Hildebrandt ◽  
T. Ceyrowsky

This paper deals with the numerical and theoretical investigations of the effect of geometrical dimensions and one-dimensional (1D)-design parameters on the impeller pressure slope of a transonic centrifugal compressor stage for industrial process application. A database being generated during the multi-objective and multipoint design process of a high flow coefficient impeller, comprising 545 computational fluid dynamics (CFD) designs is investigated in off-design and design conditions by means of Reynolds-averaged Navier–Stokes (RANS) simulation of an impeller with vaneless diffuser. For high flow coefficients of 0.16 < ϕdes < 0.18, the CFD-setup has been validated against measurement data regarding stage and impeller performance taken from MAN test rig experimental data for a centrifugal compressor stage of similar flow coefficient. This paper aims at answering the question how classical design parameter, such as the impeller blade angle distribution, impeller suction diameter, and camber line length affect the local and total relative diffusion and pressure slope toward impeller stall operation. A second-order analysis of the CFD database is performed by cross-correlating the CFD data with results from impeller two-zone 1D modeling and a rapid loading calculation process by Stanitz and Prian. The statistical covariance of first-order 1D-analysis parameters such as the mixing loss of the impeller secondary flow, the slip factor, impeller flow incidence is analyzed, thereby showing strong correlation with the design and off-design point efficiency and pressure slope. Finally, guide lines are derived in order to achieve either optimized design point efficiency or maximum negative pressure slope characteristics toward impeller stall operation.


2003 ◽  
Author(s):  
Simone Pazzi ◽  
Francesco Martelli ◽  
Marco Giachi ◽  
Michela Testa

A typical centrifugal impeller characterized by a low flow coefficient and cylindrical blades is redesigned by means of an intelligent automatic search program. The procedure consists of a Feasible Sequential Quadratic Programming (FSQP) algorithm [6] coupled to a Lazy Learning (LL) interpolator [1] to speed-up the process. The program is able to handle geometrical constraints to reduce the computational effort devoted to the analysis of non-physical configurations. The objective function evaluator is an in-house developed structured CFD code. The LL approximator is called each time the stored database can provide a sufficiently accurate performance estimate for a given geometry, thus reducing the effective CFD computations. The impeller is represented by 25 geometrical parameters describing the vane in the meridional and s-θ planes, the blade thickness and the leading edge shape. The optimisation is carried out on the impeller design point maximizing the polytropic efficiency with more or less constant flow coefficient and polytropic head. The optimization is accomplished keeping unaltered those geometrical parameters which have to be kept fixed in order to make the impeller fit the original stage. The optimisation, carried out on a cluster of sixteen PCs, is self-learning and leads to a geometry presenting an increased design point efficiency. The program is completely general and can be applied to any component which can be described by a finite number of geometrical parameters and computed by any numerical instrument to provide performance indices. The work presented in this paper has been developed inside the METHOD EC funded project for the implementation of new technologies for optimisation of centrifugal compressors.


1995 ◽  
Vol 23 (2) ◽  
pp. 116-135 ◽  
Author(s):  
H. Shiobara ◽  
T. Akasaka ◽  
S. Kagami ◽  
S. Tsutsumi

Abstract The contact pressure distribution and the rolling resistance of a running radial tire under load are fundamental properties of the tire construction, important to the steering performance of automobiles, as is well known. Many theoretical and experimental studies have been previously published on these tire properties. However, the relationships between tire performances in service and tire structural properties have not been clarified sufficiently due to analytical and experimental difficulties. In this paper, establishing a spring support ring model made of a composite belt ring and a Voigt type viscoelastic spring system of the sidewall and the tread rubber, we analyze the one-dimensional contact pressure distribution of a running tire at speeds of up to 60 km/h. The predicted distribution of the contact pressure under appropriate values of damping coefficients of rubber is shown to be in good agreement with experimental results. It is confirmed by this study that increasing velocity causes the pressure to rise at the leading edge of the contact patch, accompanied by the lowered pressure at the trailing edge, and further a slight movement of the contact area in the forward direction.


1993 ◽  
Vol 30 (6) ◽  
pp. 807-812 ◽  
Author(s):  
Walter O. Valarezo ◽  
Frank T. Lynch ◽  
Robert J. McGhee

2020 ◽  
Vol 12 ◽  
pp. 175682932097798
Author(s):  
Han Bao ◽  
Wenqing Yang ◽  
Dongfu Ma ◽  
Wenping Song ◽  
Bifeng Song

Bionic micro aerial vehicles have become popular because of their high thrust efficiency and deceptive appearances. Leading edge or trailing edge devices (such as slots or flaps) are often used to improve the flight performance. Birds in nature also have leading-edge devices, known as the alula that can improve their flight performance at large angles of attack. In the present study, the aerodynamic performance of a flapping airfoil with alula is numerically simulated to illustrate the effects of different alula geometric parameters. Different alula relative angles of attack β (the angle between the chord line of the alula and that of the main airfoil) and vertical distances h between the alula and the main airfoil are simulated at pre-stall and post-stall conditions. Results show that at pre-stall condition, the lift increases with the relative angle of attack and the vertical distance, but the aerodynamic performance is degraded in the presence of alula compared with no alula, whereas at post-stall condition, the alula greatly enhances the lift. However, there seems to be an optimal relative angle of attack for the maximum lift enhancement at a fixed vertical distance considering the unsteady effect, which may indicate birds can adjust the alula twisting at different spanwise positions to achieve the best flight performance. Different alula geometric parameters may affect the aerodynamic force by modifying the pressure distribution along the airfoil. The results are instructive for design of flapping-wing bionic unmanned air vehicles.


2017 ◽  
Vol 139 (6) ◽  
Author(s):  
Yan Wang ◽  
Ruifeng Hu ◽  
Xiaojing Zheng

Leading edge erosion is a considerable threat to wind turbine performance and blade maintenance, and it is very imperative to accurately predict the influence of various degrees of erosion on wind turbine performance. In the present study, an attempt to investigate the effects of leading edge erosion on the aerodynamics of wind turbine airfoil is undertaken by using computational fluid dynamics (CFD) method. A new pitting erosion model is proposed and semicircle cavities were used to represent the erosion pits in the simulation. Two-dimensional incompressible Reynolds-averaged Navier–Stokes equation and shear stress transport (SST) k–ω turbulence model are adopted to compute the aerodynamics of a S809 airfoil with leading edge pitting erosions, where the influences of pits depth, densities, distribution area, and locations are considered. The results indicate that pitting erosion has remarkably undesirable influences on the aerodynamic performance of the airfoil, and the critical pits depth, density, and distribution area degrade the airfoil aerodynamic performance mostly were obtained. In addition, the dominant parameters are determined by the correlation coefficient path analysis method, results showed that all parameters have non-negligible effects on the aerodynamics of S809 airfoil, and the Reynolds number is of the most important, followed by pits density, pits depth, and pits distribution area. Meanwhile, the direct and indirect effects of these factors are analyzed, and it is found that the indirect effects are very small and the parameters can be considered to be independent with each other.


Sign in / Sign up

Export Citation Format

Share Document