The Numerical Scheme for the History Force Integrals in Hydrodynamics

2019 ◽  
Vol 868 ◽  
pp. 428-460 ◽  
Author(s):  
S. Ganga Prasath ◽  
Vishal Vasan ◽  
Rama Govindarajan

The Maxey–Riley equation has been extensively used by the fluid dynamics community to study the dynamics of small inertial particles in fluid flow. However, most often, the Basset history force in this equation is neglected. Analytical solutions have almost never been attempted because of the difficulty in handling an integro-differential equation of this type. Including the Basset force in numerical solutions of particulate flows involves storage requirements which rapidly increase in time. Thus the significance of the Basset history force in the dynamics has not been understood. In this paper, we show that the Maxey–Riley equation in its entirety can be exactly mapped as a forced, time-dependent Robin boundary condition of the one-dimensional diffusion equation, and solved using the unified transform method. We obtain the exact solution for a general homogeneous time-dependent flow field, and apply it to a range of physically relevant situations. In a particle coming to a halt in a quiescent environment, the Basset history force speeds up the decay as a stretched exponential at short time while slowing it down to a power-law relaxation, ${\sim}t^{-3/2}$, at long time. A particle settling under gravity is shown to relax even more slowly to its terminal velocity (${\sim}t^{-1/2}$), whereas this relaxation would be expected to take place exponentially fast if the history term were to be neglected. An important mechanism for the growth of raindrops is by the gravitational settling of larger drops through an environment of smaller droplets, and repeatedly colliding and coalescing with them. Using our solution we estimate that the rate of growth rate of a raindrop can be grossly overestimated when history effects are not accounted for. We solve exactly for particle motion in a plane Couette flow and show that the location (and final velocity) to which a particle relaxes is different from that due to Stokes drag alone. For a general flow, our approach makes possible a numerical scheme for arbitrary but smooth flows without increasing memory demands and with spectral accuracy. We use our numerical scheme to solve an example spatially varying flow of inertial particles in the vicinity of a point vortex. We show that the critical radius for caustics formation shrinks slightly due to history effects. Our scheme opens up a method for future studies to include the Basset history term in their calculations to spectral accuracy, without astronomical storage costs. Moreover, our results indicate that the Basset history can affect dynamics significantly.


2008 ◽  
Vol 20 (3-4) ◽  
pp. 323-354 ◽  
Author(s):  
Iztok Tiselj ◽  
A. Horvat ◽  
J. Gale
Keyword(s):  

Author(s):  
A. I. Lopato ◽  
◽  
A. G. Eremenko ◽  

Recently, we developed a numerical approach for the simulation of detonation waves on fully unstructured grids and applied it to the numerical study of the mechanisms of detonation initiation in multifocusing systems. Current work is devoted to further development of our numerical approach, namely, parallelization of the numerical scheme and introduction of more comprehensive detailed chemical kinetics scheme.


2021 ◽  
Vol 67 (1 Jan-Feb) ◽  
pp. 91
Author(s):  
N. Sene

This paper revisits Chua's electrical circuit in the context of the Caputo derivative. We introduce the Caputo derivative into the modeling of the electrical circuit. The solutions of the new model are proposed using numerical discretizations. The discretizations use the numerical scheme of the Riemann-Liouville integral. We have determined the equilibrium points and study their local stability. The existence of the chaotic behaviors with the used fractional-order has been characterized by the determination of the maximal Lyapunov exponent value. The variations of the parameters of the model into the Chua's electrical circuit have been quantified using the bifurcation concept. We also propose adaptive controls under which the master and the slave fractional Chua's electrical circuits go in the same way. The graphical representations have supported all the main results of the paper.


2015 ◽  
Vol 11 (5) ◽  
pp. 587-595 ◽  
Author(s):  
Douglas J. Nicolin ◽  
Gisleine E. C. da Silva ◽  
Regina Maria M. Jorge ◽  
Luiz Mario M. Jorge

Abstract Variable diffusivity and volume of the grains are taken into account in the diffusion model that describes mass transfer in soybean hydration. The variable space grid method (VSGM) was used to consider the increase in grain size, and the diffusivity was considered an exponential function of the moisture content. An equation for the behavior of the grain radius as a function of time was obtained by global mass balance over the soybean grain and the differential equation considered that the increase in radius happens due to the influence of the convective and diffusive fluxes at the surface of the grains. The model was solved by an explicit numerical scheme which presented satisfactory results. The results showed the behavior of moisture profiles obtained as a function of time and radial position and also showed how the grain radius increased with time and changed the solution domain of the diffusion equation.


Sign in / Sign up

Export Citation Format

Share Document