Cooling Effectiveness Measurements With Thermal Radiometry in a Turbine Cascade

Author(s):  
H. K. Moon ◽  
R. Jaiswal

Airfoil temperature measurements in a hot cascade were traditionally conducted with thermocouples in spite of their limitations. In the present work, a real-time full imaging of the airfoil temperature distribution is demonstrated in a turbine cascade using a thermal radiometry system. Two synthetic sapphire windows provided infrared (IR)-viewing access from the outside. The apparent emissivity of the test airfoil was calibrated with thermocouples buried flush into the wall. The turbine cascade, fabricated with actual engine hardware, provided heat transfer similarity by matching Re, Ma, and Tu. The effect of gas to coolant temperature ratio (Tg/Tc) on the cooling effectiveness was investigated. Heating (“reverse” cooling) of the test airfoil in a relatively cold mainstream air resulted in a much more detailed temperature image than the normal (forward) cooling case, as it significantly reduced the background radiation. A methodology to correct the cooling effectiveness obtained at different gas to coolant temperature ratios than the engine condition was developed and has been experimentally validated.

Author(s):  
Gang Xie ◽  
Cun-liang Liu ◽  
Lin Ye ◽  
Rui Wang

The overall cooling effectiveness, which represents the distribution of dimensionless temperature on gas turbines surface, is an important parameter for conjugate heat transfer analysis of gas turbines. Generally, it is difficult to measure the overall cooling effectiveness in engine condition. However, the overall cooling effectiveness can be measured in the laboratory by matching the appropriate parameters to those of the actual turbine blade. Thus, it is important to evaluate the key parameters of matching methods. In this paper, the effects of adiabatic film effectiveness and Biot number on the overall cooling effectiveness were investigated with an impingement/effusion model by numerical simulation, in which 3-D steady RANS approach with the k–ω SST turbulence model were used. The tested plate had 8 cylinder hole rows of 30 degree inclined angle, and the internal cooling employed staggered array jet impingements. The matching performance was evaluated by comparing the results in both typical engine condition and laboratory condition. The analogy principles were discussed in detail, the results showed that the overall cooling effectiveness can be matched by using different matching principles in different lab condition. The theoretical analysis was verified by numerical results. The distribution and values of overall cooling effectiveness can be matched well between engine condition and lab condition by matching both temperature ratio, mainstream side Biot number and blowing ratio. If the temperature ratio is mismatched, the momentum flux ratio will be an important parameter for overall cooling effectiveness. Matching momentum flux ratio will reduce the difference of the adiabatic cooling effectiveness and heat transfer ratio between engine condition and laboratory condition.


Author(s):  
Cuong Q. Nguyen ◽  
Perry L. Johnson ◽  
Bryan C. Bernier ◽  
Son H. Ho ◽  
Jayanta S. Kapat

Data from conical-shaped film cooling holes is extremely sparse in open literature, especially the cooling uniformity characteristic, an important criterion for evaluating any film cooling design. The authors will compare the performance of conical-shaped holes to cylindrical-shaped holes. Cylindrical-shaped holes are often considered a baseline in terms of film cooling effectiveness and cooling uniformity coefficient. The authors will study two coupons with conical-shaped holes, which have 3° and 6° diffusion angles, named CON3 and CON6 respectively. A conjugate heat transfer computational fluid dynamics model and an experimental wind tunnel will be used to study these coupons. The three configurations: cylindrical baseline, CON3, and CON6, have a single row of holes with an inlet metering diameter of 3mm, length-to-nominal diameter of 4.3, and an injection angle of 30°. In this study, the authors will also take into account the heat transfer into the coolant flow from the coolant channel. In other words, coolant temperature at the exit of the coolant hole will be different than that measured at the inlet, and the conjugate heat transfer model will be used to correct for this difference. For the numerical model, the realizable k-ε turbulent model will be applied with a second order of discretization and enhanced wall treatment to provide the highest accuracy available. Grid independent studies for both cylindrical-shaped film cooling holes and conical-shaped holes will be performed and the results will be compared to data in open literature as well as in-house experimental data. Results show that conical-shaped holes considerably outperform cylindrical-shaped holes in film cooling effectiveness at all blowing ratios. In terms of cooling uniformity, conical-shaped holes perform better than cylindrical-shaped holes for low and mid-range blowing ratios, but not at higher levels.


Author(s):  
G. E. Andrews ◽  
M. L. Gupta ◽  
M. C. Mkpadi

The development of a test facility for investigating full coverage discrete hole wall cooling for gas turbine combustion chamber wall cooling is described. A low temperature test condition of 750K mainstream temperature and 300K coolant temperature was used to investigate the influence of coolant flow rate at a constant cross flow Mach number. Practical combustion conditions of 2100K combustor temperature and 700K coolant temperature are investigated to establish the validity of applying the low temperature results to practical conditions. For both situations a heat balance programme, taking into account the heat transfer within the wall was used to compute the film heat transfer coefficients. The mixing of the coolant air with the mainstream gases was studied through boundary layer temperature and CO2 profiles. It was shown that entrainment of hot flame gases between the injection holes resulted in a very low ‘adiabatic’ film cooling effectiveness.


Author(s):  
Weicheng Zhao ◽  
Zhongran Chi ◽  
Shusheng Zang

Abstract This study explores the suitable criterion for the temperature and pressure modeling to measure the overall cooling effectiveness and the reason leading to modeling deviation at relatively low temperature and pressure test condition (Part II), taking the internally-cooled Mark II vane as an example. The method used in this study includes Artificial Neural Network (ANN), Conjugate Heat Transfer (CHT) Computational Fluid Dynamics (CFD) and experiments (Part II). The average overall cooling effectiveness of the vane was selected as the target modeling parameter. After comparing the modeling error, the results show that matched-Biot number criterion has the best performance at both constant coolant temperature and temperature ratio conditions. The maximum modeling error is 6.4% and 1.2% for those two conditions, respectively. Furthermore, the performance of these similarity criteria based on empirical correlations without the ANN model were also investigated, which is more feasible in engineering use. The accuracy of matched-Biot number criterion has an obvious decrease in this condition, but it is still the best selection at constant coolant temperature conditions. While the mass flow ratio criterion becomes the most accurate one at constant temperature ratio conditions.


Author(s):  
Dennis Brauckmann ◽  
Jens von Wolfersdorf

This paper presents experimental investigations for the measurement of the adiabatic film cooling effectiveness as well as the heat transfer coefficient distribution in film cooling experiments with a row of fanshaped holes on a flat plate. The temperature distribution on the flat plate is measured using infrared-thermography (IR). Adiabatic wall effectiveness data are obtained using a high-temperature plastic material. Although a low thermal conductivity material is used, the measured temperature distribution is not identical with the adiabatic temperature distribution. The measured temperature field shows influences of 3D heat conduction inside the test plate. The effects of the heat conduction inside the test plate are modeled using the FE-method to re-evaluate the adiabatic wall temperature and to calculate the coolant gas exit temperature, which is used for the adiabatic film cooling effectiveness. For the measurement of the heat transfer coefficient ratio with and without film cooling (hf/h0) a transient method is used. Temperature transients on the test surface are initiated by switching the coolant flow and are recorded using IR-thermography. The measured wall temperature histories are converted into heat flux values assuming a semi-infinite wall model during the experiment.


1985 ◽  
Vol 107 (2) ◽  
pp. 313-320 ◽  
Author(s):  
P. M. Ligrani ◽  
C. Camci

A variable property correction is given for turbulent boundary layers that are film-cooled using staggered rows of injection holes inclined at 35 deg. With the correction, a relation is provided between the adiabatic film cooling effectiveness for constant property flow and heat transfer coefficients for variable property flow, which are based on the difference between the freestream recovery temperature and wall temperature. The variable property correction was determined from heat transfer measurements for a range of injection parameters at different values of the nondimensional coolant temperature and from results in the literature. Because the flow is compressible, the importance of the injection mass flux ratio, momentum flux ratio, and velocity ratio are considered in the determination of effectiveness.


Author(s):  
U. Drost ◽  
A. Bölcs ◽  
A. Hoffs

The transient liquid crystal technique has been used to measure film cooling effectiveness and heat transfer on a flat plate in a free jet, and a turbine airfoil in a linear cascade. A multiple-test regression method has been developed for the data reduction, considering a transient coolant temperature evolution. Flat plate film cooling was investigated for a single row of 35° inclined holes at Mach numbers of 0.3 and 0.5, and two turbulence intensities. Downstream of injection heat transfer was increased in-between the holes due to enhanced turbulence caused by the shearing of the coolant and the mainstream. At higher turbulence intensity the range of blowing ratios was broader as lift-off was delayed. Rim cooling measurements on the airfoil were conducted at engine-representative flow conditions. A maximum effectiveness of 0.3 behind injection was observed on the suction side, with slightly higher values for a double row in comparison to a single row configuration. Due to a high coolant momentum, the effectiveness on the pressure side was very low at about 0.05 for a single row configuration.


Author(s):  
Cuong Q. Nguyen ◽  
Perry L. Johnson ◽  
Bryan C. Bernier ◽  
Son H. Ho ◽  
Jayanta S. Kapat

Data from conical-shaped film cooling holes are extremely sparse in open literature, especially the cooling uniformity characteristic, an important criterion for evaluating any film cooling design. The authors will compare the performance of conical-shaped holes to cylindrical-shaped holes. Cylindrical-shaped holes are often considered a baseline in terms of film cooling effectiveness and cooling uniformity coefficient. The authors will study two coupons with conical-shaped holes, which have 3° and 6° diffusion angles, named CON3 and CON6, respectively. A conjugate heat transfer computational fluid dynamics model and an experimental wind tunnel will be used to study these coupons. The three configurations: cylindrical baseline, CON3, and CON6, have a single row of holes with an inlet metering diameter of 3 mm, length-to-nominal diameter of 4.3, and an injection angle of 30°. In this study, the authors will also take into account the heat transfer into the coolant flow from the coolant channel. In other words, the coolant temperature at the exit of the coolant hole will be different than that measured at the inlet, and the conjugate heat transfer model will be used to correct for this difference. For the numerical model, the realizable k-ɛ turbulent model will be applied with a second order of discretization and an enhanced wall treatment to provide the highest accuracy available. Grid independent studies for both cylindrical-shaped film cooling holes and conical-shaped holes will be performed, and the results will be compared to data in open literature as well as in-house experimental data. Results show that conical-shaped holes considerably outperform cylindrical-shaped holes in film cooling effectiveness at all blowing ratios. In terms of cooling uniformity, conical-shaped holes perform better than cylindrical-shaped holes for low- and midrange blowing ratios, but not at higher levels.


2013 ◽  
Vol 136 (3) ◽  
Author(s):  
Marc L. Nathan ◽  
Thomas E. Dyson ◽  
David G. Bogard ◽  
Sean D. Bradshaw

There have been a number of previous studies of the adiabatic film effectiveness for the showerhead region of a turbine vane, but no previous studies of the overall cooling effectiveness. The overall cooling effectiveness is a measure of the external surface temperature relative to the mainstream temperature and the inlet coolant temperature, and consequently is a direct measure of how effectively the surface is cooled. This can be determined experimentally when the model is constructed so that the Biot number is similar to that of engine components, and the internal cooling is designed so that the ratio of the external to internal heat transfer coefficient is matched to that of the engine. In this study, the overall effectiveness was experimentally measured on a model turbine vane constructed of a material to match Bi for engine conditions. The model incorporated an internal impingement cooling configuration. The cooling design consisted of a showerhead composed of five rows of holes with one additional row on both pressure and suction sides of the vane. An identical model was also constructed out of low conductivity foam to measure adiabatic film effectiveness. Of particular interest in this study was to use the overall cooling effectiveness measurements to identify local hot spots which might lead to failure of the vane. Furthermore, the experimental measurements provided an important database for evaluation of computational fluid dynamics simulations of the conjugate heat transfer effects that occur in the showerhead region. Continuous improvement in both measures of performance was demonstrated with increasing momentum flux ratio.


Sign in / Sign up

Export Citation Format

Share Document