A Combined Eulerian and Lagrangian Method for Prediction of Evaporating Sprays

Author(s):  
M. Burger ◽  
G. Klose ◽  
G. Rottenkolber ◽  
R. Schmehl ◽  
D. Giebert ◽  
...  

Polydisperse sprays in complex three dimensional flow systems are important in many technical applications. Numerical descriptions of sprays are used to achieve a fast and accurate prediction of complex two-phase flows. The Eulerian and Lagrangian methods are two essentially different approaches for the modeling of disperse two-phase flows. Both methods have been implemented into the same CFD - package which is based on a 3D body-fitted Finite Volume method. Considering sprays represented by a small number of droplet starting conditions, the Eulerian method is clearly superior in terms of computational efficiency. However, with respect to complex polydisperse sprays, the Lagrangian technique gives a higher accuracy. In addition, Lagrangian modeling of secondary effects such as spray-wall interaction enhances the physical description of the two-phase flow. Therefore, in the present approach the Eulerian and the Lagrangian methods have been combined in a hybrid method. The Eulerian method is used to determine a preliminary solution of the two-phase flow field. Subsequently, the Lagrangian method is employed to improve the accuracy of the first solution using detailed sets of initial conditions. Consequently, this combined approach improves the overall convergence behavior of the simulation. In the final section, the advantages of each method are discussed when predicting an evaporating spray in an intake manifold of an IC-engine.

2002 ◽  
Vol 124 (3) ◽  
pp. 481-488 ◽  
Author(s):  
M. Burger ◽  
G. Klose ◽  
G. Rottenkolber ◽  
R. Schmehl ◽  
D. Giebert ◽  
...  

Polydisperse sprays in complex three-dimensional flow systems are important in many technical applications. Numerical descriptions of sprays are used to achieve a fast and accurate prediction of complex two-phase flows. The Eulerian and Lagrangian methods are two essentially different approaches for the modeling of disperse two-phase flows. Both methods have been implemented into the same computational fluid dynamics package which is based on a three-dimensional body-fitted finite volume method. Considering sprays represented by a small number of droplet starting conditions, the Eulerian method is clearly superior in terms of computational efficiency. However, with respect to complex polydisperse sprays, the Lagrangian technique gives a higher accuracy. In addition, Lagrangian modeling of secondary effects such as spray-wall interaction enhances the physical description of the two-phase flow. Therefore, in the present approach the Eulerian and the Lagrangian methods have been combined in a hybrid method. The Eulerian method is used to determine a preliminary solution of the two-phase flow field. Subsequently, the Lagrangian method is employed to improve the accuracy of the first solution using detailed sets of initial conditions. Consequently, this combined approach improves the overall convergence behavior of the simulation. In the final section, the advantages of each method are discussed when predicting an evaporating spray in an intake manifold of an internal combustion engine.


Author(s):  
Hua Shen ◽  
Gang Wang ◽  
Kaixin Liu ◽  
Deliang Zhang

AbstractIn this paper, an Eulerian–Lagrangian two-phase flow model for liquid-fueled detonations is constructed. The gaseous mixture is described by an Eulerian method, and liquid particles in gaseous mixture are traced by a Lagrangian method. An improved space-time conservation element and solution element (CE/SE) scheme is applied to the simulations of detonations in liquid C


Author(s):  
Hua Shen ◽  
Gang Wang ◽  
Kaixin Liu ◽  
Deliang Zhang

AbstractIn this paper, an Eulerian–Lagrangian two-phase flow model for liquid-fueled detonations is constructed. The gaseous mixture is described by an Eulerian method, and liquid particles in gaseous mixture are traced by a Lagrangian method. An improved space-time conservation element and solution element (CE/SE) scheme is applied to the simulations of detonations in liquid C


Author(s):  
Yuqing Xue ◽  
Huixiong Li ◽  
Tianyou Sheng ◽  
Changjiang Liao

A large amount of air need be transported into the reservoir in the deep stratum to supply oxygen to some microbes in Microbial Enhanced Oil Recovery (MEOR). Air-water two-phase flows downward along vertical pipeline during the air transportation. Base on the experiment data described in this paper, the characteristics of air-water two phase flow patterns were investigated. The flow pattern map of air-water two phase flows in the pipe with inner diameter of 65 mm was drawn, criterions of flow pattern transition were discussed, and the dynamic signals of the pressure and the differential pressure of the two phase flow were recorded to characterize the three basic flow regimes indirectly. The frictional pressure drop of downward flow in vertical pipe must not be disregarded contrast with upward two phase flow in the vertical pipe because the buoyancy must be overcame when the gas flows downward along pipe, and there would be a maximum value of frictional when the flow pattern translated from slug flow to churn flow.


Author(s):  
Hideo Ide ◽  
Tohru Fukano

Both vertical upward and horizontal gas-liquid two-phase flows in a flat capillary rectangular channel were studied to clarify the flow phenomena, the holdup and the frictional pressure drop. The dimension of the channel used was 9.9 mm × 1.1 mm. The orientations of the channel were with the wide side vertical and the wide side horizontal. The differences between the flow characteristics in such orientations were investigated. New correlations of holdup and frictional pressure drop for flat capillary channels are proposed, in which the effect of aspect ratio has been taken into consideration.


Author(s):  
Njuki W. Mureithi ◽  
Soroush Shahriary ◽  
Michel J. Pettigrew

While steam generators operate in two-phase flow, the complex nature of the flow makes the prediction of flow-induced fluidelastic instability of steam generator tubes a challenging problem yet to be solved. In the work reported here, the quasi-static fluid force-field, which is the important unknown for two-phase flows, is measured in a rotated-triangle tube bundle for a series of void fractions and flow velocities. The forces are shown to be strongly dependent on void fraction, flow rates and relative tube positions. The fluid force field is then employed along with quasi-steady vibration stability models, originally developed for single phase flows, to model the two-phase flow problem and predict the critical instability velocity. The results are compared with dynamic vibration stability tests and are shown to be in good agreement. The present work uncovers some of the complexities of the fluid force field in two-phase flows. The database provides new potential to designers to estimate expected fluid dynamic loads under operating conditions. The force field data may also be applied in dynamic computations for tube wear simulations, replacing the simple Connors’ model which is currently used.


Author(s):  
Jean-Baptiste Dupont ◽  
Dominique Legendre ◽  
Anna Maria Morgante

This work presents direct numerical simulations of two-phase flows in fuel cell minichannels. Different two-phase flow configurations can be observed in such minichannels, which depend on gas-flow rate, liquid holdup, and wettability of each wall. These flows are known to have a significant impact on the fuel cell’s performance. The different two-phase flow configurations must be studied specially concerning the prediction of the transition among them. In the fuel cell minichannels, experimental investigations are difficult to perform because of the small size of the device and the difficult control of the wettability properties of the walls. In such systems, numerical approach can provide useful information with a perfect control of the flow characteristics, particularly for the wettability aspect. The numerical code used in this study is the JADIM code developed at IMFT, which is based on a “volume of fluid” method for interface capturing without any interface reconstruction. The numerical description of the surface tension is one of the crucial points in studying such systems where capillary effects control the phase distribution. The static and the dynamics of the triple line between the liquid, the gas, and the wall is also an essential physical mechanism to consider. The numerical implementation of this model is validated in simple situations where analytical solutions are available for the shape and the pressure jump at the interface. In this paper we present the characteristics of the JADIM code and its potential for the studies of the fuel cell internal flows. Numerical simulations on the two-phase flows on walls, in corners, and inside channels are shown.


2012 ◽  
Vol 134 (8) ◽  
Author(s):  
Zahra Baniamerian ◽  
Ramin Mehdipour ◽  
Cyrus Aghanajafi

Efficiently employing two-phase flows for cooling objectives requires comprehensive knowledge of their behavior in different conditions. Models, capable of predicting heat transfer and fluid flow trends in this area, are of great value. Numerical/analytical models in the literature are one-dimensional models involving with many simplifying assumptions. These assumptions in most cases include neglecting some mechanisms of mass transfer in two-phase flows. This study is devoted to developing an analytical two-dimensional model for simulation of fluid flow and mass transfer in two-phase flows considering the all mass transfer mechanisms (entrainment, evaporation, deposition and condensation). The correlation employed for modeling entrainment in this study, is a semiempirical correlation derived based on physical concept of entrainment phenomenon. Emphasis is put on the annular flow pattern of liquid vapor two-phase flow since this regime is the last encountered two-phase regime and has a higher heat transfer coefficient among other two-phase flow patterns. Attempts are made to employ the least possible simplification assumptions and empirical correlations in the modeling procedure. The model is then verified with experimental models of Shanawany et al., Stevanovic et al. and analytical model of Qu and Mudawar. It will be shown, considering pressure variations in both radial and axial directions along with applying our semiempirical entrainment correlation has improved the present analytical model accuracy in comparison with the accuracy of available analytical models.


Sign in / Sign up

Export Citation Format

Share Document