Imbalance Response of a Rotor Supported on Flexure Pivot Tilting Pad Journal Bearings in Series With Integral Squeeze Film Dampers

Author(s):  
Luis San Andrés ◽  
Oscar De Santiago

Measurements of the imbalance responses of a massive 45 kg rotor supported on series (flexure pivot) tilting pad bearings and integral squeeze film dampers (SFDs) are presented. The rotor-bearing configuration is of interest in compressor applications where often oil lubricated dampers are introduced in series with fluid film bearings to relocate critical speeds, enhance the overall system damping, and reduce the risks of rotordynamic instabilities due to seals and impellers, for example. Coast-down experiments from 9,000 rpm are conducted for increasing levels of rotor imbalance, and equivalent system damping coefficients identified from the peak amplitude of rotor response while traversing cylindrical mode critical speeds. The tests performed with locked (inactive) and active SFDs demonstrate the effectiveness of the flexible damped support in reducing the system critical speed and improving the overall rotor response with reduced transmitted forces to ground. The SFDs allow safe rotor operation with values of imbalance twice as large as the maximum sustained by the rotor supported on tilting pad bearings alone. The experiments reveal a linear relationship between the peak amplitude of vibration at the critical speeds and the imbalance displacement, even for rotor motions larger than 50% of the tilting pad bearing and damper clearances. The tests also show little cross-coupling effects with the shaft centerline moving along a nearly vertical path. The rotor-bearing system remained stable in the entire range of operation and without the appearance of subsynchronous vibration or non-linear damper jump response.

2003 ◽  
Vol 125 (4) ◽  
pp. 1026-1032 ◽  
Author(s):  
L. San Andre´s ◽  
O. De Santiago

Measurements of the imbalance responses of a massive 45 kg rotor supported on series (flexure pivot) tilting pad bearings and integral squeeze film dampers (SFDs) are presented. The rotor-bearing configuration is of interest in compressor applications where often oil lubricated dampers are introduced in series with fluid film bearings to relocate critical speeds, enhance the overall system damping, and reduce the risks of rotordynamic instabilities due to seals and impellers, for example. Coast-down experiments from 9000 rpm are conducted for increasing levels of rotor imbalance, and equivalent system damping coefficients identified from the peak amplitude of rotor response while traversing cylindrical mode critical speeds. The tests performed with locked (inactive) and active SFDs demonstrate the effectiveness of the flexible damped support in reducing the system critical speed and improving the overall rotor response with reduced transmitted forces to ground. The SFDs allow safe rotor operation with values of imbalance twice as large as the maximum sustained by the rotor supported on tilting pad bearings alone. The experiments reveal a linear relationship between the peak amplitude of vibration at the critical speeds and the imbalance displacement, even for rotor motions larger than 50% of the tilting pad bearing and damper clearances. The tests also show little cross-coupling effects with the shaft centerline moving along a nearly vertical path. The rotor-bearing system remained stable in the entire range of operation and without the appearance of subsynchronous vibration or nonlinear damper jump response.


Author(s):  
Edmund A. Memmott

This paper discusses the application of squeeze-film dampers in series with the tilting pad bearings of a large centrifugal compressor. The compressor was first factory tested with non-damper bearings and there was some subsynchronous vibration. Damper bearings were installed and the subsynchronous vibration was gone. The compressor shipped with damper bearings. Analytical and test results will be presented for both rotor dynamic systems. Design considerations in the use of squeeze-film dampers with tilting pad journal bearings will be reviewed.


2004 ◽  
Vol 126 (4) ◽  
pp. 848-854 ◽  
Author(s):  
Ilmar F. Santos ◽  
Rodrigo Nicoletti ◽  
Alexandre Scalabrin

In this paper the complete set of modified Reynolds’ equations for the active lubrication is presented. The solution of such a set of equations allows the determination of stiffness and damping coefficients of actively lubricated bearings. These coefficients are not just dependent on Sommerfeld number, as it would be the case of conventional hydrodynamic bearings, but they are also dependent on the excitation frequencies and gains of the control loop. Stiffness as well as damping coefficients can be strongly influenced by the choice of the control strategy, servo valve dynamics and geometry of the orifices distributed over the sliding surface. The dynamic coefficients of tilting-pad bearings with and without active lubrication and their influence on an industrial compressor of 391 Kg, which operates with a maximum speed of 10,200 rpm, are analyzed. In the original compressor design, the bearing housings are mounted on squeeze-film dampers in order to ensure reasonable stability margins during full load condition (high maximum continuous speed). Instead of having a combination of tilting-pad bearings and squeeze-film dampers, another design solution is proposed and theoretically investigated in the present paper, i.e., using actively lubricated bearings. By choosing a suitable set of control gains, it is possible not only to increase the stability of the rotor-bearing system, but also enlarge its operational frequency range.


Author(s):  
Ilmar F. Santos ◽  
Rodrigo Nicoletti ◽  
Alexandre Scalabrin

In this paper the complete set of modified Reynolds’ equations for the active lubrication is presented. The solution of such a set of equations allows the determination of stiffness and damping coefficients of actively lubricated bearings. These coefficients are not just dependent on Sommerfeld number, as it would be the case of conventional hydrodynamic bearings, but they are also dependent on the excitation frequencies and gains of the control loop. Stiffness as well as damping coefficients can be strongly influenced by the choice of the control strategy, servo valve dynamics and geometry of the orifices distributed over the sliding surface. The dynamic coefficients of tilting-pad bearings with and without active lubrication and their influence on an industrial compressor of 391 Kg, which operates with a maximum speed of 10,200 rpm, are analyzed. In the original compressor design, the bearing housings are mounted on squeeze-film dampers in order to ensure reasonable stability margins during full load condition (high maximum continuous speed). Instead of having a combination of tilting-pad bearings and squeeze-film dampers, another design solution is proposed and theoretically investigated in the present paper, i.e. using actively lubricated bearings. By choosing a suitable set of control gains, it is possible not only to increase the stability of the rotor-bearing system, but also enlarge its operational frequency range.


1983 ◽  
Vol 105 (3) ◽  
pp. 606-614 ◽  
Author(s):  
H. D. Nelson ◽  
W. L. Meacham ◽  
D. P. Fleming ◽  
A. F. Kascak

The method of component mode synthesis is developed to determine the forced response of nonlinear, multishaft, rotor-bearing systems. The formulation allows for simulation of system response due to blade loss, distributed unbalance, base shock, maneuver loads, and specified fixed frame forces. The motion of each rotating component of the system is described by superposing constraint modes associated with boundary coordinates and constrained precessional modes associated with internal coordinates. The precessional modes are truncated for each component and the reduced component equations are assembled with the nonlinear supports and interconnections to form a set of nonlinear system equations of reduced order. These equations are then numerically integrated to obtain the system response. A computer program, which is presently restricted to single shaft systems has been written and results are presented for transient system response associated with blade loss dynamics, with squeeze film dampers, and with interference rubs.


Author(s):  
H. R. Born

This paper presents an overview of the development of a reliable bearing system for a new line of small turbochargers where the bearing system has to be compatible with a new compressor and turbine design. The first part demonstrates how the increased weight of the turbine, due to a 40 % increase in flow capacity, influences the dynamic stability of the rotor-bearing system. The second part shows how stability can be improved by optimizing important floating ring parameters and by applying different bearing designs, such as profiled bore bearings supported on squeeze film dampers. Test results and stability analyses are included as well as the criteria which led to the decision to choose a squeeze film backed symmetrical 3-lobe bearing for this new turbocharger design.


2019 ◽  
Vol 254 ◽  
pp. 08005 ◽  
Author(s):  
Petr Ferfecki ◽  
Jaroslav Zapoměl ◽  
Marek Gebauer ◽  
Václav Polreich ◽  
Jiří Křenek

Rotor vibration attenuation is achieved with damping devices which work on different, often mutually coupled, physical principles. Squeeze film dampers are damping devices that have been widely used in rotordynamic applications. A new concept of a 5-segmented integral squeeze film damper, in which a flexure pivot tilting pad journal bearing is integrated, was investigated. The damper is studied for the eccentric position between the outer and inner ring of the squeeze film land. The ANSYS CFX software was used for solving the pressure and velocity distribution. The development of the complex three-dimensional computational fluid dynamics model of the squeeze film damper, learning more about the effect of the forces in the damper, and the knowledge about the behaviour of the flow are the principal contributions of this article.


Lubricants ◽  
2019 ◽  
Vol 7 (7) ◽  
pp. 61 ◽  
Author(s):  
Phuoc Vinh Dang ◽  
Steven Chatterton ◽  
Paolo Pennacchi

The role of the pivot flexibility in tilting-pad journal bearings (TPJBs) has become essential, particularly for bearings working at high applied load and relatively high rotor speeds. Predictions from a simple bearing model with rigid pivots show incorrect estimation of the dynamic coefficients in comparison with the experimental results. Normally, the more flexible the pad pivot, the lower the dynamic coefficients because the stiffness of the pivot takes in series with the stiffness and damping of the oil film. This paper investigates the influence of pivot stiffness on the dynamic force coefficients of two different five-pad TPJBs as a function of the applied static load and excitation frequency: rocker-backed pivot and spherical pivot bearings. In order to highlight the effect of the pivot stiffness in the spherical pivot bearing, displacement restriction components and elastic copper made shims have been used. Firstly, a thermo-elasto-hydrodynamic model for the static and dynamic characteristics of the two bearings is described. This model takes into account the flexibility of both pad and pivot. The pivot stiffnesses calculated by means of the Hertz theory and those obtained by experiments have been introduced and compared in the model. The clearance profiles of two tested bearing and the shaft center loci obtained by measurement and prediction are also shown. The dynamic coefficients of the two bearings obtained from the numerical simulation were compared with the experimental results. By the analysis it can be concluded that the effect of the pivot flexibility on the clearance profile, the shaft locus and on the dynamic coefficients is very significant. More important, it is important to estimate the pivot stiffness of each single pad using experimental measurements.


1998 ◽  
Vol 120 (2) ◽  
pp. 397-404 ◽  
Author(s):  
L. San Andre´s ◽  
D. Lubell

Squeeze film dampers (SFDs) provide vibration attenuation and structural isolation to aircraft gas turbine engines which must be able to tolerate larger imbalances while operating above one or more critical speeds. Rotor-bearing-SFD systems are regarded in theory as highly nonlinear, showing jump phenomena and even chaotic behavior for sufficiently large levels of rotor imbalance. Yet, few experimental results of practical value have verified the analytical predictions. A test rig for measurement of the dynamic forced response of a three-disk rotor (45 kg) supported on two cylindrical SFDs is described. The major objective is to provide a reliable data base to validate and enhance SFD design practice and to allow a direct comparison with analytical models. The open-ends SFD are supported by four-bar centering structures, each with a stiffness of 3.5 MN/m. Measured synchronous responses to 9000 rpm due to various imbalances show the rotor-SFD system to be well damped with amplification factors between 1.6 and 2.1 while traversing cylindrical and conical modes critical speeds. The rotor amplitudes of motion are found to be proportional to the imbalances for the first mode of vibration, and the damping coefficients extracted compare reasonably well to predictions based on the full-film, open-ends SFD. Tight lip (elastomeric) seals contribute greatly to the overall damping of the test rig. Measured dynamic pressures at the squeeze film lands are well above ambient values with no indication of lubricant dynamic cavitation as simple theoretical models dictate. The measurements show absence of nonlinear behavior of the rotor-SFD apparatus for the range of imbalances tested.


Sign in / Sign up

Export Citation Format

Share Document