squeeze film dampers
Recently Published Documents


TOTAL DOCUMENTS

301
(FIVE YEARS 34)

H-INDEX

23
(FIVE YEARS 2)

The reduction of noises, vibration, and mechanical waves transmitting through water from the shells of submarines is essential to their safe operation and travelling. Vibrations from the rotors of the engines are widely deemed as one of the main sources to which engineers have tried to attenuate with various designs. Squeeze-film dampers can be easily integrated into rotor-bearing structures in order to lower the level of vibrations caused by rotors out of balance. For this advantage, squeeze-film dampers are widely used in air-turbine engines. This paper presents preliminary results of a numerical simulation of a shaft running on a journal bearing integrated with a squeeze-film damper and evaluates the capacity in reducing vibrations concerning the stability of static equilibrium of the shaft journal center. The proposed damper is designed in spherical shape with self-aligning capacity. The results were obtained using finite difference method and numerical integration of the full nonlinear equations of motion.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Huizheng Chen ◽  
Shun Zhong ◽  
Zhenyong Lu ◽  
Yushu Chen ◽  
Xiyu Liu

The squeeze film damper is usually adopted in the rotor system to suppress the vibrating motion of the rotor system. In this work, not only are the physical parameters of the squeeze film damper analyzed but also the system parameters, like the number of squeeze film dampers used and squeeze film damper implementation positions, are analyzed. The amplitude-frequency curves are obtained by conducting the simulation of a dual-rotor, intershaft, and oil film force concatenated model. Through the analysis and comparisons of the results, the vibration suppression effects of the squeeze film damper with different parameter configurations are analyzed and summarized. This work contributes to further optimization and dynamical analysis work on rotor systems with the application of the squeeze film damper.


2021 ◽  
Author(s):  
Jiaqi Han ◽  
Guihuo Luo ◽  
Fei Wang ◽  
Wei Chen ◽  
Lulu Liu ◽  
...  

Abstract The turbine shared support structure is used widely in aeroengines, but theoretical and experimental research on a rotor-bearing system containing a shared turbine support structure is lacking. This paper reports research into the coupling vibration response of a squeeze-film-damper rotor-bearing system that has two spools with different rotation speeds and is supported by a turbine shared support structure. The problem is addressed by means of rotor-bearing system tests and the finite-element method. Based on the features of a turboshaft engine with a turbine shared support structure, a rotor-bearing test system with a shared support structure is designed, and a dynamic model of the test system is built based on Timoshenko beam elements. The experimental and simulation results indicate that the unbalanced response of the rotor-bearing system with a shared support structure may involve either the sum or difference of the fundamental frequencies of the rotors of the gas generator and power turbine. The simulations show that the imbalance of the power turbine rotor, the radial and bending stiffnesses of the shared support structure, and the radial clearances of squeeze film dampers at the rear of the rotor-bearing system all affect the coupling response. The amplitude of the coupling response can be suppressed effectively by (i) selecting reasonable parameter values for the turbine shared support structure and (ii) exerting strict control over the spool imbalance.


2021 ◽  
Author(s):  
Bugra Ertas ◽  
Keith Gary

Abstract The following paper focuses on the dynamic behavior of hermetic squeeze film dampers (HSFD) that utilize fluid-bounding flexible members as a part of the support structure. More specifically, the current paper advances an engineering design modification to the existing HSFD concept, which is aimed at rendering the dynamic force coefficients frequency independent. The paper builds on past HSFD testing and modeling approaches to develop higher fidelity analytical models, which are used to investigate different damper configurations while taking keen interest in the frequency dependency of force coefficients. The analytical study leverages commercially available finite element analysis (FEA) and computational fluid dynamics (CFD) software to conduct several fluid-structure-interaction (FSI) simulations of various damper architectures. In addition to the FSI analysis a more computationally efficient reduced order model (ROM) was developed, coupling structural flexibility with the fluid dynamics in the damper. Ultimately, these design tools were used to identify critical design features and configurations needed for constant linear frequency independent force coefficients. The results show a damper configuration with minimal frequency dependency of the stiffness and damping coefficients when incorporating pass through channels in combination with accumulator volumes. The paper also uses the improved design approach of the HSFD to put forth a notional integrated bearing design incorporating the new HSFD concept.


2021 ◽  
Vol 2021 ◽  
pp. 1-24
Author(s):  
Nan Zheng ◽  
Mo-li Chen ◽  
Gui-Huo Luo ◽  
Zhi-Feng Ye

Under the flight maneuvering of an aircraft, the maneuvering load on the rotor is generated, which may induce the change of dynamic behavior of aeroengine rotor system. To study the influence on the rotor dynamic behavior of constant maneuvering overload, a nonlinear dynamic model of bearing-rotor system under arbitrary maneuver flight conditions is presented by finite element method. The numerical integral method is used to investigate the dynamic characteristics of the rotor model under constant maneuvering overload, and the simulation results are verified by experimental works. Based on this, the dynamic characteristics of a complex intermediate bearing-squeeze film dampers- (SFD-) rotor system during maneuvering flight are analyzed. The simulation results indicate that the subharmonic components are amplified under constant maneuvering overload. The amplitude of the combined frequency components induced by the coupling of the inner and outer rotors is weakened. The static displacements of the rotor caused by the additional excitation force are observed. Besides, the period stability of the movement of the rotor deteriorates during maneuver flight. The design of counterrotation of the inner and outer rotors can effectively reduce the amplitude of subharmonic under constant maneuvering overload.


Author(s):  
Vincent Iacobellis ◽  
Kamran Behdinan ◽  
Dennis Chan ◽  
Dave Beamish

Abstract Squeeze film dampers (SFDs) are used in highspeed rotordynamics systems to mitigate vibrations while traversing critical speeds. SFDs are critical in dissipating large amplitude motions and dynamic loading transferred from the rotor to the bearing supports during highspeed operation. Little testing on the effect of SFDs on rotor shafts under highspeed operating conditions is available in the literature. Thus, a SFD-rotor test rig has been designed and built to study the effect of SFD oil supply pressure, oil temperature, oil inlet feed number/orientation, unbalance, and seals on the response of a Jeffcott rotor. In this paper, the test rig is introduced along with its calibration through static and dynamic testing. It was found that the rotor displacement results were improved through the addition of trial masses to provide a runout correction and that using rubber supports for the support structure generated more symmetric results in the vertical and horizontal planes compared to steel supports. Initial results for the test rig are also presented for different unbalances with and without oil supply and with and without SFD end seals. In these cases, increased unbalance produced higher amplitude motion with a corresponding increase in critical speed and decrease in damping.


Sign in / Sign up

Export Citation Format

Share Document