High Response Valve for Active Combustion Control

Author(s):  
Dong N. Wu ◽  
Joseph W. Michalski ◽  
Link C. Jaw ◽  
Kenneth Semega

This paper describes the development of a prototype high response fuel valve using piezoelectric actuator for fuel modulation control in gas turbine engines. In flow bench test, this prototype valve demonstrated 5∼11% peak-to-peak modulation strength at flow rates up to approximately 1500 pph and frequencies up to 500 Hz.

2000 ◽  
Author(s):  
John DeLaat ◽  
Kevin Breisacher ◽  
Joseph Saus ◽  
Daniel Paxson

Author(s):  
Chukwueloka O. Umeh ◽  
Leonardo C. Kammer ◽  
Corneliu Barbu

One impediment to substantially further the reductions in NOx emissions for aviation gas turbine engines is thermal-acoustic instabilities, also referred to as combustion dynamics. Dynamics arise due to the coupling of heat and pressure fluctuations in such systems. Numerous passive and semi-active control schemes, including performance de-rating and fuel staging, have been developed for land-based gas turbine engines. However, many of these schemes are not well suited to aviation engines, as a result of their weight and bulk. Observations of several combustors operating on either gaseous or liquid fuels show that the dominant dynamic frequencies have a special relation to specific non-coherent lower frequencies. Experiments show that combinations of two of these non-coherent frequencies form the dominant tones of the combustor. As part of NASA’s intelligent engines program, active combustion control is used to mitigate dynamics, as the combustor’s bulk fuel-air ratio (FAR) is made leaner in an effort to reduce NOx emissions by about 85% below the Committee on Aviation Environmental Protection (CAEP) 6 limit. In the feedback control scheme suggested in this paper, a small percentage of the overall fuel flow is pulsed at a given non-coherent frequency and with varying amplitude. The effectiveness of the dynamics reduction approach has been demonstrated via preliminary open loop control tests on a liquid-fuelled partially premixed high-pressure combustion test rig at GE Aviation in Evendale, Ohio.


1971 ◽  
Vol 93 (1) ◽  
pp. 49-55 ◽  
Author(s):  
A. Bodnaruk ◽  
C. J. Rubis

The dynamic acceleration performance of a single screw destroyer escort driven by two FT4A-2 gas turbine engines through a reversing reduction gear was analyzed. The analysis was carried out on a digital computer using a new method of a second modified advance coefficient to represent propeller thrust and torque coefficients. Quantitative results for all the major ship and propulsion plant parameters are given for the ship in a calm sea with no turning motions during fuel scheduled acceleration in the base and base-plus-boost operating modes. Control of fuel flow rates using fuel ramps with varying time bases was found to be effective in limiting engine overtorque conditions during acceleration. Other conclusions on transient thrust, acceleration time, and head reach are also presented.


1997 ◽  
Vol 28 (7-8) ◽  
pp. 536-542
Author(s):  
A. A. Khalatov ◽  
I. S. Varganov

1988 ◽  
Author(s):  
James C. Birdsall ◽  
William J. Davies ◽  
Richard Dixon ◽  
Matthew J. Ivary ◽  
Gary A. Wigell

2020 ◽  
pp. 22-29
Author(s):  
A. Bogoyavlenskiy ◽  
A. Bokov

The article contains the results of the metrological examination and research of the accuracy indicators of a method for diagnosing aircraft gas turbine engines of the D30KU/KP family using an ultra-high-frequency plasma complex. The results of metrological examination of a complete set of regulatory documents related to the diagnostic methodology, and an analysis of the state of metrological support are provided as well. During the metrological examination, the traceability of a measuring instrument (diagnostics) – an ultrahigh-frequency plasma complex – is evaluated based on the scintillation analyzer SAM-DT-01–2. To achieve that, local verification schemes from the state primary standards of the corresponding types of measurements were built. The implementation of measures to eliminate inconsistencies identified during metrological examination allows to reduce to an acceptable level the metrological risks of adverse situations when carrying out aviation activities in industry and air transportation. In addition, the probability of occurrence of errors of the first and second kind in the technological processes of tribodiagnostics of aviation gas turbine engines is reduced when implementing a method that has passed metrological examination in real practice. At the same time, the error in determining ratings and wear indicators provides acceptable accuracy indicators and sufficient reliability in assessing the technical condition of friction units of the D-30KP/KP2/KU/KU-154 aircraft engines.


Author(s):  
O. B. Silchenko ◽  
M. V. Siluyanova ◽  
V. Е. Nizovtsev ◽  
D. A. Klimov ◽  
A. A. Kornilov

The paper gives a brief review of properties and applications of developed extra-hard nanostructured composite materials and coatings based on them. The presentresearch suggestsaerospace applications of nanostructured composite materials based on carbides, carbonitrides and diboridesof transition and refractory metals. To improve the technical and economic performance of gas turbine engines, it is advisable to use new composite structural materials whose basic physicomechanical properties are several times superior to traditional ones. The greatest progress in developing new composites should be expected in the area of materials created on the basis of polymer, metal, intermetallic and ceramic matrices. Currently components and assemblies of gas turbine engines and multiple lighting power units with long operation life and durability will vigorously develop. Next-generation composites are studied in all developed countries, primarily in the United States and Japan.


Sign in / Sign up

Export Citation Format

Share Document