USE OF INTELLECTUAL METHODS FOR VIBRODIAGNOSTICS OF TECHNICAL CONDITION OF AVIATION GAS TURBINE ENGINES

Globus ◽  
2019 ◽  
Vol 39 (6) ◽  
Author(s):  
Ivan Konstantinovich Karchin
2020 ◽  
pp. 22-29
Author(s):  
A. Bogoyavlenskiy ◽  
A. Bokov

The article contains the results of the metrological examination and research of the accuracy indicators of a method for diagnosing aircraft gas turbine engines of the D30KU/KP family using an ultra-high-frequency plasma complex. The results of metrological examination of a complete set of regulatory documents related to the diagnostic methodology, and an analysis of the state of metrological support are provided as well. During the metrological examination, the traceability of a measuring instrument (diagnostics) – an ultrahigh-frequency plasma complex – is evaluated based on the scintillation analyzer SAM-DT-01–2. To achieve that, local verification schemes from the state primary standards of the corresponding types of measurements were built. The implementation of measures to eliminate inconsistencies identified during metrological examination allows to reduce to an acceptable level the metrological risks of adverse situations when carrying out aviation activities in industry and air transportation. In addition, the probability of occurrence of errors of the first and second kind in the technological processes of tribodiagnostics of aviation gas turbine engines is reduced when implementing a method that has passed metrological examination in real practice. At the same time, the error in determining ratings and wear indicators provides acceptable accuracy indicators and sufficient reliability in assessing the technical condition of friction units of the D-30KP/KP2/KU/KU-154 aircraft engines.


Author(s):  
Д.О. Пушкарёв

Рассматривается применение нейросетевых экспертных систем в области контроля, диагностики и прогнозирования технического состояния авиационных ГТД на основе нечеткой логики. Показана методика для решения таких задач в области технической эксплуатации авиационной техники совместно с использованием фаззи-интерференсной системы программы MATLAB. Используя статистические данные о работе двигателя формируется экспертная система на основе нейронной сети позволяющая осуществлять контроль и диагностику ГТД, а также прогнозировать дальнейшее техническое состояния анализируемого двигателя. The application of neural network expert systems in the field of monitoring, diagnostics and forecasting of the technical condition of aviation gas turbine engines based on fuzzy logic is considered. The technique for solving such problems in the field of technical operation of aircraft and using the fuzzy-interference system of the MATLAB program is shown. Using statistical data on the operation of the engine, an expert system is based on the fundamental of a neural network that provide monitoring and diagnostics of gas turbine engines, as well as predicting the further technical condition of the analyzed engine.


Aviation ◽  
2008 ◽  
Vol 12 (4) ◽  
pp. 101-112 ◽  
Author(s):  
Arif Pashayev ◽  
Djakhangir Askerov ◽  
Ramiz Sadiqov ◽  
Parviz Abdullayev

In this paper, it is shown that the use of probability‐statistic methods, especially at the early stage of diagnosing the technical condition of aviation gas turbine engines (GTE) when the flight information has fuzzy and limitation and uncertainty properties, is unfounded. Hence the efficiency of the use of Soft Computing methods‐fuzzy logic and neural networks at these diagnostic stages is considered. Training with high accuracy of fuzzy multiple linear and non‐linear models (fuzzy regression equations) which received on the statistical fuzzy data basis is made. Thus, for to make a more adequate model of the technical condition of GTE, the dynamics changes of skewness and kurtosis coefficients are analysed. Research of skewness and kurtasis coefficients shows, that the statistical distributions of the work parameters of GTE have a fuzzy character. Hence, consideration of fuzzy skewness and kurtosis coefficients is expedient. Investigation of the basic characteristics of the changes in the dynamics of the work parameters of GTE allows to draw the conclusion that it is necessary to use fuzzy statistical analysis during the preliminary identification of the technical condition of engines. Research of changes in the values of correlation coefficients also demonstrates their fuzzy character. Therefore for models choice the application of the Fuzzy Correlation Analysis results is offered. The fuzzy multiple correlation coefficient of fuzzy multiple regression is considered for checking the adequacy of models. At the information sufficiency is offered to use recurrent algorithm of aviation GTE technical condition identification (hard computing technology is used) on measurements of input and output parameters of the multiple linear and nonlinear generalised models at presence of noise measured (the new recursive Least Squares Method (LSM)). The system that is developed to monitor the condition of GTE provides stage‐by‐stage estimation of the technical condition of an engine. As an application of this technique, an estimation of the new operating aviation engine temperature condition was made. Santrauka Straipsnyje atskleidžiamas tikimybinio-statistinio metodo nepagrįstumas diagnozuojant dujų turbininius variklius, kai informacija yra netiksli, ribota ir neapibrėžta. Parodytas technologijos Soft Computing taikymo efektyvumas. Taikant netikslios statistikos, netikslios logikos ir neuroninių tinklų tikslius metodus dujų turbininių variklių diagnozavimui atliekamas daugiamačių tiesinių ir netiesinių modelių (regresijos lygčių), gautų iš netikslių statistinių duomenų, apmokymas. Taikant aprašytą metodą buvo atlikta pradėto eksploatuoti turbininio variklio šiluminės būsenos analizė.


2021 ◽  
Vol 156 (A2) ◽  
Author(s):  
J Sinay ◽  
A Tompos ◽  
M Puskar ◽  
V Petkova

This article addresses the issue of diagnostics and maintenance of Gas Turbine Engines which are located in high Speed Ferries, Cruisers, Frigates, Corvettes, etc. Assurance of reliable operation can be performed only by using correct diagnostic methods and procedures of monitoring the condition of the devices and by selecting the correct strategy of maintenance. The issue of monitoring the technical condition of Gas Turbine Engines is treated through multiparametric methods of technical diagnostics incorporated into predictive maintenance, which is a part of proactive maintenance. There are methods of vibrodiagnostics, thermography, tribology, borescopy and emissions measurement. Each of these methods has lots of advantages and disadvantages; therefore it is very important to ensure their correct combination for trouble-free operation of those important facilities. Their suitability at work is discussed in the matrix of diagnostic methods application and the PF chart. The output of the work is a proposal of a suitable model of maintenance control which uses multiparametric diagnostic methods for small and big Gas Turbine Engines and optimizes maintenance costs.


Author(s):  
Александр Анатолиевич Тамаргазин ◽  
Людмила Борисовна Приймак ◽  
Валерий Владиславович Шостак

The presence on modern aviation gas-turbine engines of dozens and even hundreds of sensors for continuous registration of various parameters of their operation makes it possible to collect and process large amounts of information. This stimulates the development of monitoring and diagnostic systems. At the same time the presence of great volumes of information is not always a sufficient condition for making adequate managerial decisions, especially in the case of evaluation of the technical condition of aviation engines. Thus it is necessary to consider, that aviation engines it is objects which concern to individualized, i.e. to such which are in the sort unique. Therefore, the theory of creating systems to assess the technical state of aircraft engines is formed on the background of the development of modern neural network technology and requires the formation of specific methodological apparatus. From these positions in the article the methods which are used at carrying out clustering of the initial information received at work of modern systems of an estimation and forecasting of a technical condition of aviation gas-turbine engines are considered. This task is particularly relevant for creating neural network multimode models of aircraft engines used in technical state estimation systems for identification of possible failures and damages. Metric, optimization and recurrent methods of input data clustering are considered in the article. The main attention is given to comparison of clustering methods in order to choose the most effective of them for the aircraft engine condition evaluation systems and suitable for implementation of systems with meta-learning. The implementation of clustering methods of initial data allows us to breakdown diagnostic images of objects not by one parameter, but by a whole set of features. In addition, cluster analysis, unlike most mathematical-statistical methods do not impose any restrictions on the type of objects under consideration, and allows us to consider a set of raw data of almost arbitrary nature, which is very important when assessing the technical condition of aircraft engines. At the same time cluster analysis allows one to consider a sufficiently large volume of information and sharply reduce, compress large arrays of parametrical information, make them compact and visual.


Sign in / Sign up

Export Citation Format

Share Document