scholarly journals Heat Transfer in the Oscillating Turbulent Boundary Layer

Author(s):  
J. A. Miller

Measurements of local heat transfer coefficients in the fully established oscillating turbulent boundary layer over a flat plate are reported. In the range of frequencies from 0.1 to 200 cps and amplitudes from 8 to 92 percent of the freestream mean velocity increases in local Nusselt numbers of 3 to 5 percent were found. It is concluded that substantial increases in local coefficients sometimes reported in oscillating flows of low standing wave ratio may be traced to reduced transition Reynolds numbers.

1969 ◽  
Vol 91 (4) ◽  
pp. 239-244 ◽  
Author(s):  
James A. Miller

Measurements of local heat-transfer coefficients in the fully established oscillating turbulent boundary layer over a flat plate are reported. In the range of frequencies from 0.1 to 200 cps and amplitudes from 8 to 92 percent of the freestream mean velocity, increases in local Nusselt numbers of 3 to 5 percent were found. It is concluded that substantial increases in local coefficients, sometimes reported in oscillating flows of low standing wave ratio, may be traced to reduced transition Reynolds numbers.


1960 ◽  
Vol 82 (2) ◽  
pp. 101-107 ◽  
Author(s):  
R. A. Seban

Local heat-transfer coefficients and recovery factors are presented for three different cylinders in a two-dimensional subsonic air flow, with emphasis on the effect of screen-produced turbulence on these quantities. The increase in turbulent intensity so realized produced larger local heat-transfer coefficients, in a way dependent upon the location on the cylinders, through a direct increase in the heat transfer to the laminar boundary layer, through an earlier transition to turbulence, or through an alteration in the character of the separated flow. Alternatively, recovery factors were affected less, being invariant with respect to the turbulent intensity for attached boundary layer flow, but demonstrating large changes in those separated flow regions for which increased free stream turbulence produced substantial changes in the nature of the separated flow.


1969 ◽  
Vol 91 (1) ◽  
pp. 21-26 ◽  
Author(s):  
J. W. Stachiewicz

Local heat-transfer coefficients on the surface of a longitudinal, constant area fin were measured experimentally. Turbulent flow was maintained in all tests and the range of fin spacing-to-height ratios from 0.25 to 0.5 was covered. The film coefficients do not increase monotonically from the base of the fin as suggested by an earlier investigation, but increase to a maximum at about 50 percent of fin height, then dip, and then increase again near the tip. The distribution of local coefficients along the height of the fin was similar at all Reynolds numbers and fin spacings investigated. This distribution yields lower fin efficiencies than those computed assuming a constant film coefficient, but, taking advantage of the fact that the distribution is remarkably similar at all fin spacings and all Reynolds numbers, a simple correction factor can be applied to the conventional, constant “h” efficiency to allow for the effect of variation of h. The integrated average heat-transfer coefficients on the surface of the fin were correlated at all fin spacings by a single equation. The coefficients along the base surface between fins were also measured.


1968 ◽  
Vol 90 (1) ◽  
pp. 1-6 ◽  
Author(s):  
R. Cheesewright

The paper reports the results of an experimental investigation which was intended to clarify the present uncertain position with regard to the distributions of mean temperature and mean velocity in a turbulent natural-convection boundary layer. Data reported for the turbulent boundary layer for Grashof numbers between 1010 and 1011 include local heat transfer coefficients as well as temperatures and velocities. Local heat transfer coefficients and temperature distributions are also reported for the laminar and transitional boundary-layer regions. Results are compared with other experimental data and with theoretical predictions.


1971 ◽  
Vol 93 (4) ◽  
pp. 461-468 ◽  
Author(s):  
J. A. Miller ◽  
P. F. Pucci

Local heat transfer coefficients to an airfoil in an oscillating stream have been measured for a range of frequencies and oscillation amplitudes. Results at moderate angles of attack are in agreement with previously reported findings. However, at large angles of attack, including those associated with stall in steady flow, a strong periodic starting vortex shed from the leading edge leads to a dramatic reattachment of the flow and consequent increase in local Nusselt Numbers of as much as five-fold. These effects are shown to be amplified by increasing oscillation frequency and amplitude.


Author(s):  
Chaouki Ghenai

Numerical simulations of the flow field and heat transfer of squealer blade tip are performed in this study. The effect of Reynolds number (Re = 10000–40000), the clearance gap to width ratios (C/W = 5%–15%) and the cavity depth to width ratios (D/W = 10%, 20% and 50%) on fluid flow and heat transfer characteristics are obtained. The temperature and velocity distributions inside the cavity, the local heat transfer coefficients, and the average Nusselt numbers for the pressure and suction sides of the turbine blade tip are determined. This paper presents the results of the effects of Reynolds number, clearance gap and width ratios on the Nusslet number for the pressure and suction sides of squealer turbine blade tip. The results show a good agreement with the experimental data obtained by Metzger and Bunker. New correlations for the average Nusselt numbers for turbine blade tip pressure and suction sides are presented.


Author(s):  
A. Brown ◽  
B. W. Martin

The mainly empirical criteria used to predict boundary-layer behavior under the combined influence of velocity gradient factor and significant mainstream turbulence are reviewed and assessed by application to recently published blade heat-transfer measurements. Indications are that under the conditions experienced in gas turbine engines, the scale and frequency of mainstream turbulence may be as important as its intensity in determining local heat transfer coefficients round the blades.


1957 ◽  
Vol 24 (1) ◽  
pp. 2-8
Author(s):  
D. S. Johnson

Abstract Results are presented of an experimental investigation of the concomitant thermal and velocity fields occurring when there is a small stepwise discontinuity in the temperature of the wall on which a zero-pressure-gradient, low-speed, turbulent boundary layer has formed. The mean velocity and temperature fields have been measured and local heat-transfer-coefficient values in the stream-wise direction have been obtained in the region where the thermal boundary layer has not yet reached the free stream. No over-all similarity between the thermal and velocity fields was found.


1979 ◽  
Vol 101 (1) ◽  
pp. 29-37 ◽  
Author(s):  
S. V. Patankar ◽  
M. Ivanovic´ ◽  
E. M. Sparrow

The fully developed turbulent flow and heat transfer characteristics for tubes and annuli with longitudinal internal fins were analyzed via a mixing length model. The model takes account of the proximity of both the fin surfaces and the tube wall as well as of the gradients in the radial and circumferential directions. Application was made to air flows, and a single adjustable constant in the model was fixed by comparisons with experimental data for the friction factor and the circumferential-average Nusselt number for internally finned tubes. The local heat transfer coefficients exhibited a substantial variation along the fin height, with the smallest value (essentially zero) at the base and the largest value at the tip. Lesser and more gradual variations were exhibited by the local heat transfer coefficients on the wall of the tube or annulus. In general, the fins were found to be as effective a heat transfer surface as the wall (per unit area). Average Nusselt numbers and friction factors are presented for both the tube and the annulus.


1968 ◽  
Vol 90 (4) ◽  
pp. 408-412 ◽  
Author(s):  
R. A. Seban ◽  
G. L. Caldwell

Local heat transfer coefficients are presented for a single spherical protuberance on a plate, along which the boundary layer was turbulent, for air speeds from 50 to 150 fps. Two spheres were used to produce ratios of sphere diameter to boundary-layer thickness of the order of 2 and 0.7. The heat transfer coefficient behind the sphere depends approximately on the eight-tenths power of the velocity, its maximum is located about 2 dia downstream of the sphere, and the downstream effect is limited spanwise to a region about 4 dia in width.


Sign in / Sign up

Export Citation Format

Share Document