Volume 1A: Gas Turbines
Latest Publications


TOTAL DOCUMENTS

63
(FIVE YEARS 0)

H-INDEX

4
(FIVE YEARS 0)

Published By American Society Of Mechanical Engineers

9780791879672

Author(s):  
H. S. Bloomfield

The potential benefits of solar/fossil hybrid gas turbine power systems were assessed. Both retrofit and new systems were considered from the aspects of: cost of electricity, fuel conservation, operational mode, technology requirements, and fuels flexibility. Hybrid retrofit (repowering) of existing combustion (simple Brayton cycle) turbines can provide near-term fuel savings and solar experience, while new and advanced recuperated or combined-cycle systems may be an attractive fuel saving and economically competitive vehicle to transition from today’s gas- and oil-fired powerplants to other more abundant fuels.


Author(s):  
R. W. Ainsworth ◽  
T. V. Jones

Internal convection cooling of turbine blades and nozzle guide vanes in jet engines is a method used to prolong the life of those components, which are subjected to very high temperature flows from the engine’s combustion chambers. The cooling is effected by passing cold gas through the internal coolant passages situated in the core of the components, the shape of these passages in many cases being simple duct geometries. Experiments are described in which transient techniques were used in an Internal Flow Facility to measure the flow property variation and heat transfer in various geometries simulating typical internal coolant passages, at conditions representative of those found in engines. Results obtained from the three geometries studied (circular, rectangular, and triangular ducts) are compared with existing experimental data and an integral-approach theoretical prediction. In addition, flow in the circular duct with mass removal representing film cooling mass flow was also studied experimentally, and these results are compared with theoretical predictions.


1979 ◽  
Author(s):  
L. F. Fougere ◽  
H. G. Stewart ◽  
J. Bell

Citizens Utilities Company’s Kauai Electric Division is the electric utility on the Island of Kauai, fourth largest and westernmost as well as northernmost of the Hawaiian Islands. As a result of growing load requirements, additional generating capacity was required that would afford a high level of reliability and operating flexibility and good fuel economy at reasonable capital investment. To meet these requirements, a combined cycle arrangement was completed in 1978 utilizing one existing gas turbine-generator and one new gas turbine-generator, both exhausting to a new heat recovery steam generator which supplies steam to an existing steam turbine-generator. Damper controlled ducting directs exhaust gas from either gas turbine, one at a time, through the heat recovery steam generator. The existing oil-fired steam boiler remains available to power the steam turbine-generator independently or in parallel with the heat recovery steam generator. The gas turbines can operate either in simple cycle as peaking units or in combined cycle, one at a time, as base load units. This arrangement provides excellent operating reliability and flexibility, and the most favorable economics of all generating arrangements for the service required.


1979 ◽  
Author(s):  
A. Caruvana ◽  
W. H. Day ◽  
G. A. Cincotta ◽  
R. S. Rose

This paper presents an update on the status of the technology of the water-cooled gas turbine developed by the General Electric Company under contracts with EPRI, ERDA, and DOE. Particular emphasis is devoted to the design and development of water-cooled composite turbine nozzles and buckets, and a sectoral combustor designed for low-Btu coal-derived gas operation. The operating characteristics of a low-temperature coal gas chemical cleanup system which is to be added to the coal gasification facility are also discussed. Status of the materials and process developments in support of the designs are also presented, as are updates to the Phase I HTTT Program combined-cycle studies, which evaluate the commercial viability of integrated coal gasification and combined-cycle operation.


1979 ◽  
Author(s):  
W. Hilary Lee

The effect of high pressure inside and outside of tubes and of pressure ratios on tube spacings associated with minimum volume and minimum weight of shell-and-tube gas turbine recuperators, is examined. For this purpose, a method was developed for analyzing volume and weight of shell-and-tube heat exchanger surfaces. The influence of TEMA recommended minimum spacing-to-diameter ratio on the result is discussed. Implications of the above findings on gas turbine recuperator design is sketched.


1979 ◽  
Author(s):  
G. Miller ◽  
V. Zakkay ◽  
S. Rosen

The efficient extraction of a high-temperature working fluid from a coal-fired fluidized bed combustor depends, to a great extent, on the design of the immersed heat exchanger. Of special importance is the solidity of the cooling tubes immersed in the bed. The interaction between increasing solidity and the consequent degradation of proper fluidization and circulation is being studied at the New York University fluidized bed combustion facility. It is found that under certain conditions, the solidity of heat exchanger in the bed can be significantly increased and thus one can extract increased mass flows of clean working fluid. In addition, a variation in local solidity may be another mechanism for improving performance.


Author(s):  
J. E. Haas ◽  
M. G. Kofskey

An extensive experimental investigation was made to determine the effect of varying the rotor tip clearance of a 12.77-cm-tip diameter, single-stage, axial-flow reaction turbine. In this investigation, the rotor tip clearance was obtained by use of a recess in the casing above the rotor blades and also by use of a reduced blade height. For the recessed casing configuration, the optimum rotor blade height was found to be the one where the rotor tip diameter was equal to the stator tip diameter. The tip clearance loss associated with this optimum recessed casing configuration was less than that for the reduced blade height configuration.


1979 ◽  
Author(s):  
S. M. Kowleski ◽  
C. D. Harrington

This paper describes the planning, developmental, equipment selection and operational problem phases of the high-speed ferry system presently being operated on San Francisco Bay by the Golden Gate Bridge, Highway and Transportation District. The reasons for the selection of the vessel propulsion package consisting of gas turbine engines and waterjet pumps are discussed in some detail. Most importantly, the paper covers the problems experienced to date with this equipment in continuous marine operation.


1979 ◽  
Author(s):  
M. W. Horner ◽  
W. H. Day ◽  
D. P. Smith ◽  
A. Cohn

A continuing technology development program initiated by General Electric (GE) in the early 1960s and joined by the Electric Power Research Institute (EPRI) in 1974 is successfully resolving potential barrier problems in the development of water cooled turbines. Early work by GE Corporate Research and Development demonstrated the feasibility of closed circuit, pressurized water-cooling of stationary nozzles (vanes), and of open circuit, unpressurized water-cooling of rotating buckets (blades). A small-scale turbine was designed, fabricated, and operated at a gas temperature of 2850 F (1565 C) at 16 atm, with surface metal temperatures less than 1000 F (540 C). Early results from the EPRI sponsored Water-Cooled Gas Turbine Development Programs were presented at the 1978 Gas Turbine Conference (Report #ASME 78-GT-72). This paper reports more recent results, obtained between mid-1977 and mid-1978. Significant progress has been made in a number of areas: (a) water-cooled nozzle and bucket design and fabrication, (b) corrosion kinetics model verification and testing, (c) partially filled internal channel bucket heat transfer testing, and (d) stationary to rotating water transfer and collection testing. Results to date are encouraging with regard to the application of water-cooled turbine components to achieve improved reliability and fuels flexibility at increased turbine firing temperatures.


1979 ◽  
Author(s):  
M. C. Doherty ◽  
D. R. Wright

Typical applications of aircraft derivative and heavy duty gas turbines in petroleum production and refining, natural gas processing, ethylene, ammonia, LNG processing plants and offshore platforms are reviewed. Guidelines are included to illustrate how gas turbines can be applied to minimize fuel consumption and cooling water requirements and optimize space utilization.


Sign in / Sign up

Export Citation Format

Share Document