A Model for Dynamic Loss Response in Axial-Flow Compressors

Author(s):  
M. R. Sexton ◽  
W. F. O’Brien

An experimentally-determined dynamic loss response function was developed and incorporated in a model to predict the rotating stall behavior of an experimental compressor. The loss response model was developed employing Fourier transforms. The basis of the compressor model is a mathematical representation of the flow fields upstream and downstream of the compressor rotor. The compressor rotor is represented in the model by a semi-actuator disc. The results of the investigation show that the physical mechanisms which control the onset and propagation velocity of rotating stall in a single-stage compressor can be modeled with the use of the loss response function in a semi-actuator disc model of the compressor. The function represents the dynamic loss characteristics of the compressor rotor row, and provides important advantages over previous techniques.

Author(s):  
C. Palomba ◽  
P. Puddu ◽  
F. Nurzia

Rotating stall is an unsteady phenomenon that arises in axial and radial flow compressors. Under certain operating conditions a more or less regular cell of turbulent flow develops and propagates around the annulus at a speed lower than rotor speed. Recently little work has been devoted to the understanding of the flow field pattern inside a rotating cell. However, this knowledge could be of help in the understanding of the interaction between the cell and the surrounding flow. Such information could be extremely important during the modelling process when some hypothesis have to be made about the cell behaviour. A detailed experimental investigation has been conducted during one cell operation of an isolated low-speed axial flow compressor rotor using a slanted hot wire and an ensemble average technique based on the cell revolution time. The three flow field components have been measured on 9 axial section for 800 circumferential points and on 21 radial stations to give a complete description of the flow field upstream and downstream of the rotor. Interpretation of data can give a description of the mean flow field patterns inside and around the rotating cell.


2009 ◽  
Vol 2009 (0) ◽  
pp. 377-378 ◽  
Author(s):  
Hiroaki KIKUTA ◽  
Masato FURUKAWA ◽  
Satoshi GUNJISHIMA ◽  
Kenichiro IWAKIRI ◽  
Takuro KAMEDA

2006 ◽  
Vol 2006.2 (0) ◽  
pp. 149-150
Author(s):  
Sho BONKOHARA ◽  
Ken-ichiro IWAKIRI ◽  
Ryusuke OHTAGURO ◽  
Yasuhiro SHIBAMOTO ◽  
Masato FURUKAWA

Author(s):  
Hongwei Ma ◽  
Haokang Jiang

This paper presents an experimental study of the three-dimensional turbulent flow field in the tip region of an axial flow compressor rotor passage at a near stall condition. The investigation was conducted in a low-speed large-scale compressor using a 3-component Laser Doppler Velocimetry and a high frequency pressure transducer. The measurement results indicate that a tip leakage vortex is produced very close to the leading edge, and becomes the strongest at about 10% axial chord from the leading edge. Breakdown of the vortex periodically occurs at about 1/3 chord, causing very strong turbulence in the radial direction. Flow separation happens on the tip suction surface at about half chord, prompting the corner vortex migrating toward the pressure side. Tangential migration of the low-energy fluids results in substantial flow blockage and turbulence in the rear of a rotor passage. Unsteady interactions among the tip leakage vortex, the separated vortex and the corner flow should contribute to the inception of the rotating stall in a compressor.


2006 ◽  
Vol 2006 (0) ◽  
pp. _G607-a_
Author(s):  
Ken-ichiro IWAKIRI ◽  
Ryusuke OHTAGURO ◽  
Sho BONKOHARA ◽  
Yasuhiro SHIBAMOTO ◽  
Kazutoyo YAMADA ◽  
...  

2010 ◽  
Vol 2010.7 (0) ◽  
pp. 15-16
Author(s):  
Hiroaki KIKUTA ◽  
Masato FURUKAWA ◽  
Kenichiro IWAKIRI ◽  
Satoshi GUNJISHIMA ◽  
Goki OKADA ◽  
...  

Author(s):  
Subramani Satish Kumar ◽  
Ranjan Ganguli ◽  
Siddanagouda Basanagouda Kandagal ◽  
Soumendu Jana

The vibrations involved in a typical axial compressor rotor in an aircraft engine are complex. Generally, the compressor blades are arranged in a cantilever type configuration. It is also known that the amplitude of vibration is highest near the tip section of the shroudless blade. Compressors are limited by aerodynamic instabilities such as rotating stall and surge. Rotating stall generally initiates near the tip region of the compressor. Blade vibrations coupled with aerodynamic instabilities will lead to a catastrophic scenario of flutter that is asynchronous to the rotor speed. This aeroelastic interaction is detrimental if not taken into consideration. Knowledge of vibration characteristics of the compressor rotor will help in mapping the flutter zone for safe operation. The modal characteristics of the transonic axial compressor rotor available at the Axial Flow Compressor Research (AFCR) facility of National Aerospace Laboratories (NAL) are established in this study. A cyclic-symmetric pre-stressed modal analysis is performed on a single sector of the compressor rotor consisting of a shroudless blade connected to the disk with a pin type dovetail arrangement for different speeds. The main diagnostic charts for turbomachinery vibration i.e., Campbell and Interference diagrams are generated for various speeds and harmonic indices/ nodal diameters of the compressor rotor. The critical crossings of the engine order excitation lines over the natural frequencies of the blade are highlighted. Experimental modal investigations and analysis are carried out on the compressor rotor at the stationary condition and for two different boundary conditions. First, the blade alone modal characteristics under the free-free condition are established. Later, the complete blade-disk assembly mounted on a base test-stand is used to investigate the cantilever fixed-free boundary condition of the chosen blade. The modal characteristics are established by performing impact hammer experiments. Blade excitation is provided by a calibrated Dytran make impact hammer and the response is measured using a calibrated accelerometer. The structural dynamic data acquisition hardware and software from OROS is used for determining the natural frequencies, mode shapes and structural damping for each mode of the compressor rotor. There is a good agreement in the natural frequencies and mode shapes established using experiment and numerical methods for the first three modes investigated. Modal Assurance Criteria (MAC) analysis is carried out for two different modal identification algorithms to compare the mode shapes.


2006 ◽  
Vol 2006 (0) ◽  
pp. _G607-1_-_G607-4_
Author(s):  
Ken-ichiro IWAKIRI ◽  
Ryusuke OHTAGURO ◽  
Sho BONKOHARA ◽  
Yasuhiro SHIBAMOTO ◽  
Kazutoyo YAMADA ◽  
...  

1970 ◽  
Vol 92 (4) ◽  
pp. 407-414 ◽  
Author(s):  
Y. Le Bot ◽  
J. Paulon ◽  
P. Belaygue

A single, isolated, test axial compressor rotor in a constant section annular duct is used for determination of off-design pressure losses. The results obtained are interpreted by means of loss coefficients and description of the flow field is deduced from a simplified actuator theory that takes into account pressure losses. Rotor stall limit is interpreted as that limit mass flow rate for which no continuous solution of the equations can be obtained. Unstable operations that take place for mass flow rates smaller than the stall limit are shown to be either rotating stall or wall separation, according to the shape of the downstream pressure profile. Experiments on the rotor confirm validity of these assumptions.


Sign in / Sign up

Export Citation Format

Share Document