2415 Effect of Tip Clearance on Structure of Rotating Stall Cell in an Axial Flow Compressor Rotor

2006 ◽  
Vol 2006.2 (0) ◽  
pp. 149-150
Author(s):  
Sho BONKOHARA ◽  
Ken-ichiro IWAKIRI ◽  
Ryusuke OHTAGURO ◽  
Yasuhiro SHIBAMOTO ◽  
Masato FURUKAWA
2009 ◽  
Vol 2009 (0) ◽  
pp. 377-378 ◽  
Author(s):  
Hiroaki KIKUTA ◽  
Masato FURUKAWA ◽  
Satoshi GUNJISHIMA ◽  
Kenichiro IWAKIRI ◽  
Takuro KAMEDA

Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6143
Author(s):  
Xiaoxiong Wu ◽  
Bo Liu ◽  
Botao Zhang ◽  
Xiaochen Mao

Numerical simulations have been performed to study the effect of the circumferential single-grooved casing treatment (CT) at multiple locations on the tip-flow stability and the corresponding control mechanism at three tip-clearance-size (TCS) schemes in a transonic axial flow compressor rotor. The results show that the CT is more efficient when its groove is located from 10% to 40% tip axial chord, and G2 (located at near 20% tip axial chord) is the best CT scheme in terms of stall-margin improvement for the three TCS schemes. For effective CTs, the tip-leakage-flow (TLF) intensity, entropy generation and tip-flow blockage are reduced, which makes the interface between TLF and mainstream move downstream. A quantitative analysis of the relative inlet flow angle indicates that the reduction of flow incidence angle is not necessary to improve the flow stability for this transonic rotor. The control mechanism may be different for different TCS schemes due to the distinction of the stall inception process. For a better application of CT, the blade tip profile should be further modified by using an optimization method to adjust the shock position and strength during the design of a more efficient CT.


2008 ◽  
Vol 131 (1) ◽  
Author(s):  
Xingen Lu ◽  
Wuli Chu ◽  
Junqiang Zhu ◽  
Yangfeng Zhang

In order to advance the understanding of the fundamental mechanisms of axial skewed slot casing treatment and their effects on the subsonic axial-flow compressor flow field, the coupled unsteady flow through a subsonic compressor rotor and the axial skewed slot was simulated with a state-of-the-art multiblock flow solver. The computational results were first compared with available measured data, that showed the numerical procedure calculates the overall effect of the axial skewed slot correctly. Then, the numerically obtained flow fields were interrogated to identify the physical mechanism responsible for improvement in stall margin of a modern subsonic axial-flow compressor rotor due to the discrete skewed slots. It was found that the axial skewed slot casing treatment can increase the stall margin of subsonic compressor by repositioning of the tip clearance flow trajectory further toward the trailing of the blade passage and retarding the movement of the incoming∕tip clearance flow interface toward the rotor leading edge plane.


1998 ◽  
Vol 120 (3) ◽  
pp. 477-486 ◽  
Author(s):  
D. W. Thompson ◽  
P. I. King ◽  
D. C. Rabe

The effects of stepped-tip gaps and clearance levels on the performance of a transonic axial-flow compressor rotor were experimentally determined. A two-stage compressor with no inlet guide vanes was tested in a modern transonic compressor research facility. The first-stage rotor was unswept and was tested for an optimum tip clearance with variations in stepped gaps machined into the casing near the aft tip region of the rotor. Nine causing geometries were investigated consisting of three step profiles at each of three clearance levels. For small and intermediate clearances, stepped tip gaps were found to improve pressure ratio, efficiency, and flow range for most operating conditions. At 100 percent design rotor speed, stepped tip gaps produced a doubling of mass flow range with as much as a 2.0 percent increase in mass flow and a 1.5 percent improvement in efficiency. This study provides guidelines for engineers to improve compressor performance for an existing design by applying an optimum casing profile.


2010 ◽  
Vol 2010.7 (0) ◽  
pp. 15-16
Author(s):  
Hiroaki KIKUTA ◽  
Masato FURUKAWA ◽  
Kenichiro IWAKIRI ◽  
Satoshi GUNJISHIMA ◽  
Goki OKADA ◽  
...  

Author(s):  
Donald W. Thompson ◽  
Paul I. King ◽  
Douglas C. Rabe

The effects of stepped tip gaps and clearance levels on the performance of a transonic axial-flow compressor rotor were experimentally determined. A two-stage compressor with no inlet guide vanes was tested in a modern transonic compressor research facility. The first-stage rotor was unswept and was tested for an optimum tip clearance with variations in stepped gaps machined into the casing near the aft tip region of the rotor. Nine casing geometries were investigated consisting of three step profiles at each of three clearance levels. For small and intermediate clearances, stepped tip gaps were found to improve pressure ratio, efficiency, and flow range for most operating conditions. At 100% design rotor speed, stepped tip gaps produced a doubling of mass flow range with as much as a 2.0% increase in mass flow and a 1.5% improvement in efficiency. This study provides guidelines for engineers to improve compressor performance for an existing design by applying an optimum casing profile.


2021 ◽  
pp. 1-21
Author(s):  
S. Yue ◽  
Y. Wang ◽  
Z. Zhang ◽  
L. Wei ◽  
H. Wang

Abstract The rotating instability in a contra-rotating axial flow compressor is investigated by experiments. Twenty-four pressure sensors were installed on the casing to capture the unsteady flow in the rotor tip region simultaneously. A double-phase-locking technique suitable for the contra-rotating compressor was proposed to characterise the static pressure contours of the rotor tip. The mean and root-mean-square pressure contours indicate that rotating instability occurs before the rotating stall happened, and the rotor tip clearance vortex is located upstream of the rear rotor leading edge plane before stall. Fourier spectrum shows that rotating instability and rotating stall both happened under the stall condition, and the frequency band of rotating instability does not change with the flow rate. In the front rotor, the frequency of rotating instability is half of the blade passing frequency. It is verified that the modal estimation method can be implemented by using the average azimuthal phase velocity, which significantly reduced the number of pressure sensors required. Modal estimation results show that each peak of the rotating instability frequency band corresponds to a unique dominant circumferential mode. By optimising average azimuthal phase velocity, an improved modal estimation method is obtained, which can further improve the reliability of the modal estimation results.


1986 ◽  
Vol 108 (1) ◽  
pp. 22-31 ◽  
Author(s):  
B. Lakshminarayana ◽  
N. Sitaram ◽  
J. Zhang

The blade-to-blade variation of relative stagnation pressure losses in the tip region inside the rotor of a single-stage, axial-flow compressor is presented and interpreted in this paper. The losses are measured at two flow coefficients (one at the design point and the other at the near peak pressure rise point) to discern the effect of blade loading on the end-wall losses. The tip clearance losses are found to increase with an increase in the pressure rise coefficient. The losses away from the tip region and near the hub regions are measured downstream. The losses are integrated and interpreted in this paper.


Sign in / Sign up

Export Citation Format

Share Document