Three-Dimensional Turbulent Flow in the Tip Region of an Axial Compressor Rotor Passage at a Near Stall Condition

Author(s):  
Hongwei Ma ◽  
Haokang Jiang

This paper presents an experimental study of the three-dimensional turbulent flow field in the tip region of an axial flow compressor rotor passage at a near stall condition. The investigation was conducted in a low-speed large-scale compressor using a 3-component Laser Doppler Velocimetry and a high frequency pressure transducer. The measurement results indicate that a tip leakage vortex is produced very close to the leading edge, and becomes the strongest at about 10% axial chord from the leading edge. Breakdown of the vortex periodically occurs at about 1/3 chord, causing very strong turbulence in the radial direction. Flow separation happens on the tip suction surface at about half chord, prompting the corner vortex migrating toward the pressure side. Tangential migration of the low-energy fluids results in substantial flow blockage and turbulence in the rear of a rotor passage. Unsteady interactions among the tip leakage vortex, the separated vortex and the corner flow should contribute to the inception of the rotating stall in a compressor.

Author(s):  
Hongwei Ma ◽  
Haokang Jiang

Three-dimensional turbulent flow of the tip leakage vortex in a single-stage axial compressor rotor passage is studied using a 3-Component Laser Doppler Velocimetry. The measurement results indicate that the tip leakage vortex originates at about 10% axial chord, 8% pitch away from the suction surface, and becomes strongest at about 30% chord. With the flow downstream, the vortex core moves toward the pressure surface and to a lower radial location, leading to substantial flow mixing, blockage and turbulence in the tip region. The radial component of turbulence intensities is found to be the highest while the axial-radial component of Reynolds stresses is the largest. Breakdown of the leakage vortex occurs inside the rear rotor passage, which makes the flow more turbulent in a wider region downstream. This viewpoint is confirmed by the measurements of unsteady static pressure on the casing wall. Breakdown of a leakage vortex is observed clearly in a compressor cascade with a small clearance. Unsteady interactions of the broken vorticities and the suction surface’s boundary layer are shown obviously inside the downstream passage.


Author(s):  
Masato Furukawa ◽  
Kazuhisa Saiki ◽  
Kazutoyo Yamada ◽  
Masahiro Inoue

The unsteady flow nature caused by the breakdown of the tip leakage vortex in an axial compressor rotor at near-stall conditions has been investigated by unsteady three-dimensional Navier-Stokes flow simulations. The simulations show that the spiral-type breakdown of the tip leakage vortex occurs inside the rotor passage at the near-stall conditions. Downstream of the breakdown onset, the tip leakage vortex twists and turns violently with time, thus interacting with the pressure surface of the adjacent blade. The motion of the vortex and its interaction with the pressure surface are cyclic. The vortex breakdown causes significant changes in the nature of the tip leakage vortex, which result in the anomalous phenomena in the time-averaged flow fields near the tip at the near-stall conditions: no rolling-up of the leakage vortex downstream of the rotor, disappearance of the casing wall pressure trough corresponding to the leakage vortex, large spread of the low-energy fluid accumulating on the pressure side, and large pressure fluctuation on the pressure side. As the flow rate is decreased, the movement of the tip leakage vortex due to its breakdown becomes so large that the leakage vortex interacts with the suction surface as well as the pressure one. The interaction with the suction surface gives rise to the three-dimensional separation of the suction surface boundary layer.


2001 ◽  
Vol 123 (4) ◽  
pp. 748-754 ◽  
Author(s):  
Choon-Man Jang ◽  
Masato Furukawa ◽  
Masahiro Inoue

Three-dimensional structures of the vortical flow field in a propeller fan with a shroud covering only the rear region of its rotor tip have been investigated by experimental analysis using laser Doppler velocimetry (LDV) measurements and by numerical analysis using a large eddy simulation (LES) in Part I of the present study. The propeller fan has a very complicated vortical flow field near the rotor tip compared with axial fan and compressor rotors. It is found that three vortex structures are formed near the rotor tip: the tip vortex, the leading edge separation vortex, and the tip leakage vortex. The tip vortex is so strong that it dominates the flow field near the tip. Its formation starts from the blade tip suction side near the midchord. Even at the design condition the tip vortex convects nearly in the tangential direction, thus impinging on the pressure surface of the adjacent blade. The leading edge separation vortex develops close along the tip suction surface and disappears in the rear region of the rotor passage. The tip leakage vortex is so weak that it does not affect the flow field in the rotor.


Author(s):  
K. Yamada ◽  
M. Furukawa ◽  
T. Nakano ◽  
M. Inoue ◽  
K. Funazaki

Unsteady three-dimensional flow fields in a transonic axial compressor rotor (NASA Rotor 37) have been investigated by unsteady Reynolds-averaged Navier-Stokes simulations. The simulations show that the breakdown of the tip leakage vortex occurs in the compressor rotor because of the interaction of the vortex with the shock wave. At near-peak efficiency condition small bubble-type breakdown of the tip leakage vortex happens periodically and causes the loading of the adjacent blade to fluctuate periodically near the leading edge. Since the blade loading near the leading edge is closely linked to the swirl intensity of the tip leakage vortex, the periodic fluctuation of the blade loading leads to the periodic breakdown of the tip leakage vortex, resulting in self-sustained flow oscillation in the tip leakage flow field. However, the tip leakage vortex breakdown is so weak and small that it is not observed in the time-averaged flow field at near-peak efficiency condition. On the other hand, spiral-type breakdown of the tip leakage vortex is caused by the interaction between the vortex and the shock wave at near-stall operating condition. The vortex breakdown is found continuously since the swirl intensity of tip leakage vortex keeps strong at near-stall condition. The spiral-type vortex breakdown has the nature of self-sustained flow oscillation and gives rise to the large fluctuation of the tip leakage flow field, in terms of shock wave location, blockage near the rotor tip and three-dimensional separation structure on the suction surface. It is found that the breakdown of the tip leakage vortex leads to the unsteady flow phenomena near the rotor tip, accompanying large blockage effect in the transonic compressor rotor at the near-stall condition.


1993 ◽  
Vol 115 (3) ◽  
pp. 444-450 ◽  
Author(s):  
S. Kang ◽  
C. Hirsch

An analysis of the experimental data of a linear compressor cascade with tip clearance is presented with special attention to the development of the tip leakage vortex. A method for determining the tip vortex core size, center position, and vorticity or circulation from the measured data is proposed, based on the assumption of a circular tip vortex core. It is observed that the axial velocity profile passing through the tip vortex center is wavelike. The vorticity of the tip vortex increases rapidly near the leading edge and reaches its highest values at a short distance downstream, from which it gradually decreases. In the whole evolution, its size is growing and its center is moving away from both the suction surface and the endwall, approximately in a linear way.


Author(s):  
Takahiro Nishioka ◽  
Shuuji Kuroda ◽  
Tsukasa Nagano ◽  
Hiroshi Hayami

An experimental study was conducted to investigate the inception patterns of rotating stall at different rotor blade stagger-angle settings with the aim of extending the stable operating range for a variable-pitch axial-flow fan. Pressure and velocity fluctuations were measured for a low-speed axial-flow fan with a relatively large tip clearance. Two stagger-angle settings were tested, the design setting, and a high setting which was 10 degrees greater than the design setting. Rotating instability (RI) was first observed near the peak pressure-rise point at both settings. It propagated in the rotation direction at about 40 to 50% of the rotor rotation speed, and its wavelength was about one rotor-blade pitch. However, the stall-inception patterns differed between the two settings. At the design stagger-angle setting, leading edge separation occurred near the stall-inception point, and this separation induced a strong tip leakage vortex that moved upstream of the rotor. This leakage vortex simultaneously induced a spike and a RI. The conditions for stall inception were consistent with the simple model of the spike-type proposed by Camp and Day. At the high stagger-angle setting, leading edge separation did not occur, and the tip leakage vortex did not move upstream of the rotor. Therefore, a spike did not appear although RI developed at the maximum pressure-rise point. This RI induced a large end-wall blockage that extended into the entire blade passage downstream of the rotor. This large blockage rapidly increased the rotor blade loading and directly induced a long length-scale stall cell before a spike or modal disturbance appeared. The conditions for stall inception were not consistent with the simple models of the spike or modal-type. These findings indicate that the movement of the tip leakage vortex associated with the rotor blade loading affects the development of a spike and RI and that the inception pattern of a rotating stall depends on the stagger-angle setting of the rotor blades.


Author(s):  
Shun Kang ◽  
Ch. Hirsch

An analysis of the experimental data of a linear compressor cascade with tip clearance is presented with special attention to the development of the tip leakage vortex. A method for determining the tip vortex core size, centre position and vorticity or circulation from the measured data is proposed, based on the assumption of a circular tip vortex core. It is observed that the axial velocity profile passing through the tip vortex centre is wake-like. The vorticity of the tip vortex increases rapidly near the leading edge and reaches its highest values at a short distance downstream, from which it gradually decreases. In the whole evolution, its size is growing and its centre is moving away from both the suction surface and the endwall, approximately in a linear way.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4168
Author(s):  
Botao Zhang ◽  
Xiaochen Mao ◽  
Xiaoxiong Wu ◽  
Bo Liu

To explain the effect of tip leakage flow on the performance of an axial-flow transonic compressor, the compressors with different rotor tip clearances were studied numerically. The results show that as the rotor tip clearance increases, the leakage flow intensity is increased, the shock wave position is moved backward, and the interaction between the tip leakage vortex and shock wave is intensified, while that between the boundary layer and shock wave is weakened. Most of all, the stall mechanisms of the compressors with varying rotor tip clearances are different. The clearance leakage flow is the main cause of the rotating stall under large rotor tip clearance. However, the stall form for the compressor with half of the designed tip clearance is caused by the joint action of the rotor tip stall caused by the leakage flow spillage at the blade leading edge and the whole blade span stall caused by the separation of the boundary layer of the rotor and the stator passage. Within the investigated varied range, when the rotor tip clearance size is half of the design, the compressor performance is improved best, and the peak efficiency and stall margin are increased by 0.2% and 3.5%, respectively.


1997 ◽  
Vol 119 (1) ◽  
pp. 122-128 ◽  
Author(s):  
S. L. Puterbaugh ◽  
W. W. Copenhaver

An experimental investigation concerning tip flow field unsteadiness was performed for a high-performance, state-of-the-art transonic compressor rotor. Casing-mounted high frequency response pressure transducers were used to indicate both the ensemble averaged and time varying flow structure present in the tip region of the rotor at four different operating points at design speed. The ensemble averaged information revealed the shock structure as it evolved from a dual shock system at open throttle to an attached shock at peak efficiency to a detached orientation at near stall. Steady three-dimensional Navier Stokes analysis reveals the dominant flow structures in the tip region in support of the ensemble averaged measurements. A tip leakage vortex is evident at all operating points as regions of low static pressure and appears in the same location as the vortex found in the numerical solution. An unsteadiness parameter was calculated to quantify the unsteadiness in the tip cascade plane. In general, regions of peak unsteadiness appear near shocks and in the area interpreted as the shock-tip leakage vortex interaction. Local peaks of unsteadiness appear in mid-passage downstream of the shock-vortex interaction. Flow field features not evident in the ensemble averaged data are examined via a Navier-Stokes solution obtained at the near stall operating point.


Author(s):  
Xi Nan ◽  
Feng Lin ◽  
Takehiro Himeno ◽  
Toshinori Watanabe

Casing boundary layer effectively places a limit on the pressure rise capability achievable by the compressor. The separation of the casing boundary layer not only produce flow loss but also closely related to the compressor rotating stall. The motivation of this paper is to present a viewpoint that the casing boundary layer should be paid attention to in parallel with other flow factors on rotating stall trigger. This paper illustrates the casing boundary layer behavior by displaying its separation phenomena with the presence of tip leakage vortex at different flow conditions. Skin friction lines and the corresponding absolute streamlines are used to demonstrate the three-dimensional flow patterns on and near the casing. The results depict a Saddle, a Node and several tufts of skin friction lines dividing the passage into four zones. The tip leakage vortex is enfolded within one of the zones by the separated flows. All the flows in each blade passage are confined within the passage as long as the compressor is stable. The casing boundary layer of a transonic compressor is also examined in the same way, which results in qualitatively similar zonal flows that enfolds the tip leakage vortex. This research develops a new way to study the casing boundary layer in rotating compressors. The results may provide a first-principle based explanation to stalling mechanisms for compressors that are casing sensitive.


Sign in / Sign up

Export Citation Format

Share Document