stall inception
Recently Published Documents


TOTAL DOCUMENTS

363
(FIVE YEARS 48)

H-INDEX

26
(FIVE YEARS 3)

2022 ◽  
pp. 1-21
Author(s):  
Jack Hutchings ◽  
Cesare A. Hall

Abstract Previous research into axial compressor stall has mainly focused on stall inception and methods to extend the stable operating range. This paper considers the performance of an axial compressor beyond stall and investigates how the characteristics of stall cells depend on Reynolds number. An experimental study has been conducted using a single-stage axial compressor capable of operating across the Reynolds number range of 10,000 – 100,000. Detailed unsteady measurements have been used to measure the behaviour across a range of in-stall flow coefficients. These measurements have been used to extract the stall hysteresis and to determine the size, speed, number, and spanwise extent of the stall cells. The results show that for the stalled compressor, as Reynolds number increases, the size of the minimum stable stall cell decreases. This means that a larger change in throttle area is needed to reduce the stall cell down to a size where the compressor can recover from stall. At the design Reynolds number, the number of stall cells that form transitions from one, to two, and then to four stall cells as the flow coefficient is reduced. At lower Reynolds numbers, the two-stall-cell state becomes unstable; instead, a single stall cell transitions directly into five stall cells. As the number of stall cells increases, so do the speed of the stall cells and the total size. Further reductions in the flow coefficient cause an increase in the total size and a decrease in the stall cell speed.


2022 ◽  
pp. 1-11
Author(s):  
Semi Kim ◽  
Jaeho Choi ◽  
Ewan Gunn ◽  
Tobias Brandvik ◽  
Young Seok Kang

Author(s):  
Botao Zhang ◽  
Bo Liu ◽  
Xiaochen Mao ◽  
Xiaoxiong Wu ◽  
Hejian Wang

To deeply understand the hub leakage flow and its influence on the aerodynamic performance and flow behaviors of a small-scale transonic axial compressor, variations of the performance and the flow field of the compressor with different hub clearance sizes and clearance shapes were numerically analyzed. The results indicate that the hub clearance size has remarkable impacts on the overall performance of the compressor. With the increase of the hub clearance, the intensity of the hub leakage flow increases, resulting in more intense flow blockage near the stator hub, which reduces the compressor efficiency. However, the flow field near the blade mid-span is modified due to the more convergent flow as the reduced effective flow area caused by the passage blockage, and the flow separation range is narrowed, thus the flow stability of the compressor is enhanced. On this basis, two kinds of non-uniform clearance cases of expanding clearance and shrinking clearance with the same circumferential leakage area as the design clearance were investigated. The occurrence position of the double leakage flow which is closely connected with the flow loss and blockage is shifted backward by the expanding clearance, the flow capacity near the stator hub is enhanced, and the unsteady fluctuation intensity of the flow field is attenuated but fluctuation frequency remains. Similarly, the modification of the stator blade root flow field may result in the reduction of stall margin. The effect of the shrinking clearance on compressor performance is opposite to that of the expanding clearance, which reduces the peak efficiency and delays the stall inception.


Author(s):  
Xiaodong Liu ◽  
Yaojun Li ◽  
Zhuqing Liu ◽  
Wei Yang

Abstract Stall in centrifugal pumps is a complicated flow phenomenon, which is detrimental to the pumps' safety and stable operation. Using a high-frequency PIV system (f=10k Hz) and a bench-scale refractive index matching experimental setup, two measurement methods are introduced to observe the dynamic stall inception and evolution. In the first method, the flow rate was continuously reduced at an interval of 0.005Qd and the experiment was carried out under stable flow rate condition. It shows the flow adjacent to the blade suction side gradually evolved from the flow separation into a broken vortex. The stall vortex moved toward the impeller's inlet and continuously grew, and resulted in significant changes in the main flow direction at the channel inlet. The formation and development of the other vortex structures in channel were closely related to the stall vortex at the inlet. The second method is the dynamic flow rate measurement and the results show that the stall is not caused by the increase in the relative inflow angle. It was obtained that the velocity value in the stall channel near the suction side rapidly decreased; however in the non-stall channel, the velocity value increased at the channel inlet. By analyzing the velocity distribution in both flow channels before and after the stall, the mechanism of alternating stall is well explained. Meanwhile, it was obtained that the stall was more likely to originate from the flow separation near the blade suction side for low specific speed impeller


2021 ◽  
Author(s):  
Manas Madasseri Payyappalli ◽  
A M Pradeep
Keyword(s):  

2021 ◽  
Author(s):  
Daniel Franke ◽  
Maximilian J\xfcngst ◽  
Daniel M\xf6ller ◽  
Heinz-Peter Schiffer ◽  
Thomas Giersch

2021 ◽  
Author(s):  
Hans Verschueren ◽  
Cesare Hall ◽  
Mark Wilson

2021 ◽  
pp. 1-66
Author(s):  
Dakun Sun ◽  
Jia Li ◽  
Xu Dong ◽  
Ruize Xu ◽  
Xiaofeng Sun

Abstract This paper concerns the stability improvement and noise reduction of an axial compressor caused by the foam metal casing treatment (FMCT). Three FMCTs with different PPI (pores per inch), 20, 35, and 50, are tested experimentally. Two installation locations of foam metal in casing are considered and investigated. At location 1, it is found that the FMCT improves the stall margin by 5.4%~8.7% and the attenuation of compressor noise is up to 5 dB. At location 2, the stall margin is extended by 22.2%~37.1% but increasing the noise mostly. Besides, foam metal at location 1 causes less efficiency loss than that in location 2. Based on the analysis in near-casing pressure distribution, spanwise performance comparison and stall inception, the mechanism of the FMCT for enhancing compressor stability is also discussed.


2021 ◽  
Author(s):  
E. J. Gunn ◽  
T. Brandvik ◽  
M. J. Wilson ◽  
R. Maxwell

Abstract This paper considers the impact of a damaged leading edge on the stall margin and stall inception mechanisms of a transonic, low pressure ratio fan. The damage takes the form of a squared-off leading edge over the upper half of the blade. Full-annulus, unsteady CFD simulations are used to explain the stall inception mechanisms for the fan at low- and high-speed operating points. A combination of steady and unsteady simulations show that the fan is predicted to be sensitive to leading edge damage at low speed, but insensitive at high speed. This blind prediction aligns well with rig test data. The difference in response is shown to be caused by the change between subsonic and supersonic flow regimes at the leading edge. Where the inlet relative flow is subsonic, rotating stall is initiated by growth and propagation of a subsonic leading edge flow separation. This separation is shown to be triggered at higher mass flow rates when the leading edge is damaged, reducing the stable flow range. Where the inlet relative flow is supersonic, the flow undergoes a supersonic expansion around the leading edge, creating a supersonic flow patch terminated by a shock on the suction surface. Rotating stall is triggered by growth of this separation, which is insensitive to leading edge shape. This creates a marked difference in sensitivity to damage at low- and high-speed operating points.


Sign in / Sign up

Export Citation Format

Share Document