Investigation of the Transient Response of a Dual-Rotor System With Intershaft Squeeze Film Damper

Author(s):  
Qihan Li ◽  
James F. Hamilton

A method is presented for calculating the dynamics of a dual-rotor gas turbine engine equipped with a flexible intershaft squeeze-film damper. The method is based on the functional expansion component synthesis method. The transient response of the rotor due to a suddenly applied unbalance in the high-pressure turbine under different steady-speed operations is calculated. The damping effects of the intershaft damper and stability of the rotor system are investigated.

1986 ◽  
Vol 108 (4) ◽  
pp. 613-618 ◽  
Author(s):  
Qihan Li ◽  
J. F. Hamilton

A method is presented for calculating the dynamics of a dual-rotor gas turbine engine equipped with a flexible intershaft squeeze-film damper. The method is based on the functional expansion component synthesis method. The transient response of the rotor due to a suddenly applied imbalance in the high-pressure turbine under different steady-speed operations is calculated. The damping effects of the intershaft damper and stability of the rotor system are investigated.


Author(s):  
H. Kanki ◽  
Y. Kaneko ◽  
M. Kurosawa ◽  
T. Yamamoto

The cause of the low-frequency vibration (subsynchronous vibration) of a high pressure turbine was investigated by the analytical study and vibration exciting test for the actual machine in operation. From the results, it is found that the low-frequency vibration is caused by the decrease of the rotor system damping at high-loading operating conditions. As a countermeasure, a squeeze-film damper is designed in order to increase the damping of the rotor system. After the verification test of the squeeze-film damper’s capability in the workshop, it was installed on the actual turbine. Vibration exciting tests for the high pressure turbine under the actual operating conditions were carried out. These field tests confirmed that the damping of the rotor system was increased as expected in the design and consequently the low-frequency vibrations disappeared completely under all operating conditions.


1998 ◽  
Vol 120 (2) ◽  
pp. 391-396 ◽  
Author(s):  
H. Kanki ◽  
Y. Kaneko ◽  
M. Kurosawa ◽  
T. Yamamoto

The cause of the low-frequency vibration (subsynchronous vibration) of a high-pressure turbine was investigated by the analytical study and vibration exciting test for the actual machine in operation. From the results, it is found that the low-frequency vibration is caused by the decrease of the rotor system damping at high-loading operating conditions. As a countermeasure, a squeeze-film damper is designed in order to increase the damping of the rotor system. After the verification test of the squeeze-film damper’s capability in the workshop, it was installed on the actual turbine. Vibration exciting tests for the high-pressure turbine under the actual operating conditions were carried out. These field tests confirmed that the damping of the rotor system was increased as expected in the design and consequently the low-frequency vibrations disappeared completely under all operating conditions.


Sign in / Sign up

Export Citation Format

Share Document