Rotor Blade Unsteady Aerodynamic Gust Response to Inlet Guide Vane Wakes

Author(s):  
Steven R. Manwaring ◽  
Sanford Fleeter

A series of experiments are performed in an extensively instrumented axial flow research compressor to investigate the fundamental flow physics of wake generated periodic rotor blade row unsteady aerodynamics at realistic values of the reduced frequency. Unique unsteady data are obtained which describe the fundamental unsteady aerodynamic gust interaction phenomena on the first stage rotor blades of a research axial flow compressor generated by the wakes from the Inlet Guide Vanes. In these experiments, the effects of steady blade aerodynamic loading and the aerodynamic forcing function, including both the transverse and chordwise gust components, and the amplitude of the gusts, are investigated and quantified.

1993 ◽  
Vol 115 (1) ◽  
pp. 197-206 ◽  
Author(s):  
S. R. Manwaring ◽  
S. Fleeter

A series of experiments is performed in an extensively instrumented axial flow research compressor to investigate the fundamental flow physics of wake-generated periodic rotor blade row unsteady aerodynamics at realistic values of the reduced frequency. Unique unsteady data are obtained that describe the fundamental unsteady aerodynamic gust interaction phenomena on the first-stage rotor blades of a research axial flow compressor generated by the wakes from the inlet guide vanes. In these experiments, the effects of steady blade aerodynamic loading and the aerodynamic forcing function, including both the transverse and chordwise gust components, and the amplitude of the gusts, are investigated and quantified.


Author(s):  
Theoklis Nikolaidis ◽  
Periclis Pilidis ◽  
J. A. Teixeira ◽  
V. Pachidis

A numerical approach was used to evaluate the liquid water film thickness and its motion on an axial flow compressor rotor blade under water ingestion conditions. By post-processing blading data and using computer programs to create the blades and their computational grid, the global computational domain of the first stage of an axial flow compressor was built. The flow field within the domain was solved by CFX-Tascflow, which is a commercial CFD code commonly used in turbomachinery. The computational domain consists of an extended inlet, an inlet guide vane, a rotor and a stator blade. Having solved the flow field at Design Point, the inlet guide vane blade was re-positioned to account for changes in idle speed. At that speed, the effects of water ingestion are expected to be more significant on gas turbine engine performance. Several cases with water ingestion were studied, changing parameters like water mass and compressor rotational speed. A FORTRAN computer program was created to calculate the water film height and speed. The extra torque needed by the compressor to keep running at the same rotational speed, was also calculated. The considerable increase in torque was confirmed by experimental observations according to which water ingestion had a detrimental effect on gas turbine operation.


1989 ◽  
Vol 111 (4) ◽  
pp. 409-417 ◽  
Author(s):  
V. R. Capece ◽  
S. Fleeter

The fundamental flow physics of multistage blade row interactions are experimentally investigated at realistic reduced frequency values. Unique data are obtained that describe the fundamental unsteady aerodynamic interaction phenomena on the stator vanes of a three-stage axial flow research compressor. In these experiments, the effect on vane row unsteady aerodynamics of the following are investigated and quantified: (1) steady vane aerodynamic loading; (2) aerodynamic forcing function waveform, including both the chordwise and transverse gust components; (3) solidity; (4) potential interactions; and (5) isolated airfoil steady flow separation.


1968 ◽  
Vol 183 (1) ◽  
pp. 153-164 ◽  
Author(s):  
R. Parker

The paper presents the results of a theoretical and experimental investigation into the potential flow interaction effects between blade rows in an axial flow compressor stage. The investigation is concentrated on the inlet guide vane/rotor interaction and shows that the passing of the rotor blades behind the guide vanes produces large pressure fluctuations on the surfaces of the guide vanes. The available method of computation is not yet adequate for prediction of absolute values of pressure amplitude but does provide a sound basis for comparison between alternative designs.


1984 ◽  
Vol 106 (2) ◽  
pp. 337-345
Author(s):  
B. Lakshminarayana ◽  
N. Sitaram

The annulus wall boundary layer inside the blade passage of the inlet guide vane (IGV) passage of a low-speed axial compressor stage was measured with a miniature five-hole probe. The three-dimensional velocity and pressure fields were measured at various axial and tangential locations. Limiting streamline angles and static pressures were also measured on the casing of the IGV passage. Strong secondary vorticity was developed. The data were analyzed and correlated with the existing velocity profile correlations. The end wall losses were also derived from these data.


1998 ◽  
Vol 4 (4) ◽  
pp. 217-231
Author(s):  
Heinz E. Gallus

Detailed results of unsteady flow measurements in a stator-rotor-stator assembly of an axial-flow turbine as well as an inlet guide vane-rotor-stator formation of an axial-flow compressor are presented in this paper.The measurements include the time-dependent 3-D velocity vector fields in the axial gaps between the blade rows by means of triple-hot wire-technique, furthermore the total pressure field downstream of the blade rows by means of semiconductor total pressure probes and the unsteady flow field determination in the rotor passages by LDV-technique. Special semiconductor pressure measurements along the casing all over the rotor tip clearance permit detailed discussion of the rotor tip clearance flows.The conclusion of the measured data provides a new and very instructive view of the physics of the unsteady blade-row interaction in axial-flow turbines and compressors.


Author(s):  
Kirubakaran Purushothaman ◽  
N. R. Naveen Kumar ◽  
Vidyadheesh Pandurangi ◽  
Ajay Pratap

Abstract Variability in stator vanes is a widely used technique to improve the stability and efficiency of axial flow compressor in gas turbine engines. Most of the modern aircraft jet engines use variable stator vanes in both low pressure and high pressure compressors primarily for off-design performance. This study discusses in detail about the effect of stator variability in a three stage low pressure axial compressor at design and off-design conditions. Computational flow analysis were carried out for the three stage low pressure compressor with variability in inlet guide vane and first stage stator blade. Detailed investigation on flow physics was carried out in rotor blade passages with stator variability. At off-design speeds, the reduction in flow velocity is lower than the reduction in blade tip speed. This leads to mismatch in flow angles and inlet blade angles causing high incidence and large flow separation in blade passage. This results in poor aerodynamic stability of the axial compressor at off-design speeds. In this study, aerodynamic performance of compressor is evaluated from 70% to 100% design speeds with different stagger angle setting of inlet guide vane at each speed. Further, to improve 2nd stage rotor performance, variability was introduced in 1st stage stator blade and performance was evaluated. Compressor test results are compared with CFD data for design and off-design speeds.


1987 ◽  
Vol 109 (3) ◽  
pp. 420-428 ◽  
Author(s):  
V. R. Capece ◽  
S. Fleeter

The fundamental flow physics of multistage blade row interactions is experimentally investigated, with unique data obtained which quantify the unsteady harmonic aerodynamic interaction phenomena. In particular, a series of experiments is performed in a three-stage axial flow research compressor over a range of operating and geometric conditions at high reduced frequency values. The multistage unsteady interaction effects of the following on each of the three vane rows are investigated: (1) the steady vane aerodynamic loading, (2) the waveform of the aerodynamic forcing function to each vane row, including both the chordwise and traverse gust components.


Sign in / Sign up

Export Citation Format

Share Document