Optimal Circumferential Placement of Cylindrical Thermocouple Probes for Reduction of Excitation Forces

Author(s):  
Eben C. Cobb ◽  
Tsu-Chien Cheu ◽  
Jay Hoffman

This paper presents a design methodology to determine the optimal circumferential placement of cylindrical probes upstream of a turbine stage for reduced excitation forces. The potential flow forcing function generated by the probes is characterized by means of a Fourier analysis. A finite difference formulation is used to evaluate the sensitivity of the forcing function to the probe positions. An optimization scheme, based on the linear programming method, uses the sensitivity analysis results to reposition the probes such that the Fourier amplitudes of critical excitation orders are reduced. The results for an example design situation are presented.

1993 ◽  
Vol 115 (2) ◽  
pp. 418-423
Author(s):  
E. C. Cobb ◽  
T.-C. Cheu ◽  
J. Hoffman

This paper presents a design methodology to determine the optimal circumferential placement of cylindrical probes upstream of a turbine stage for reduced excitation forces. The potential flow forcing function generated by the probes is characterized by means of a Fourier analysis. A finite difference formulation is used to evaluate the sensitivity of the forcing function to the probe positions. An optimization scheme, based on the linear programming method, uses the sensitivity analysis results to reposition the probes such that the Fourier amplitudes of critical excitation orders are reduced. The results for a sample design situation are presented.


2019 ◽  
Vol 6 (04) ◽  
Author(s):  
ASHUTOSH UPADHYAYA

A study was undertaken in Bhagwanpur distributary of Vaishali Branch Canal in Gandak Canal Command Area, Bihar to optimally allocate land area under different crops (rice and maize in kharif, wheat, lentil, potato in rabi and green gram in summer) in such a manner that maximizes net return, maximizes crop production and minimizes labour requirement employing simplex linear programming method and Multi-Objective Fuzzy Linear Programming (MOFLP) method. Maximum net return, maximum agricultural production, and minimum labour required under defined constraints (including 10% affinity level of farmers to rice and wheat crops) as obtained employing Simplex method were ` 3.7 × 108, 5.06 × 107 Kg and 66,092 man-days, respectively, whereas Multi-Objective Fuzzy Linear Programming (MOFLP) method yielded compromised solution with net return, crop production and labour required as ` 2.4 × 108, 3.3 × 107Kg and 1,79,313 man-days, respectively. As the affinity level of farmers to rice and wheat crops increased from 10% to 40%, maximum net return and maximum production as obtained from simplex linear programming method and MOFLP followed a decreasing trend and minimum labour required followed an increasing trend. MOFLP may be considered as one of the best capable ways of providing a compromised solution, which can fulfill all the objectives at a time.


2020 ◽  
Vol 20 (S11) ◽  
Author(s):  
Gaurav Rao ◽  
Salimur Choudhury ◽  
Pawan Lingras ◽  
David Savage ◽  
Vijay Mago

Abstract Background When an Out-of-Hospital Cardiac Arrest (OHCA) incident is reported to emergency services, the 911 agent dispatches Emergency Medical Services to the location and activates responder network system (RNS), if the option is available. The RNS notifies all the registered users in the vicinity of the cardiac arrest patient by sending alerts to their mobile devices, which contains the location of the emergency. The main objective of this research is to find the best match between the user who could support the OHCA patient. Methods For performing matching among the user and the AEDs, we used Bipartite Matching and Integer Linear Programming. However, these approaches take a longer processing time; therefore, a new method Preprocessed Integer Linear Programming is proposed that solves the problem faster than the other two techniques. Results The average processing time for the experimentation data was   1850 s using Bipartite matching,   32 s using the Integer Linear Programming and  2 s when using the Preprocessed Integer Linear Programming method. The proposed algorithm performs matching among users and AEDs faster than the existing matching algorithm and thus allowing it to be used in the real world. Conclusion: This research proposes an efficient algorithm that will allow matching of users with AED in real-time during cardiac emergency. Implementation of this system can help in reducing the time to resuscitate the patient.


2017 ◽  
Vol 51 (22) ◽  
pp. 13086-13094 ◽  
Author(s):  
Hajime Ohno ◽  
Kazuyo Matsubae ◽  
Kenichi Nakajima ◽  
Yasushi Kondo ◽  
Shinichiro Nakamura ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document