scholarly journals Experimental Study on Vibration of a Rotating Blade

Author(s):  
Y. C. Fan ◽  
M. S. Ju ◽  
Y. G. Tsuei

The vibration of a rotating blade is investigated in this work. A rotor system is built and natural frequencies of the rotating blade are measured and compared with the numerical results from a finite element analysis. The experimental setup has a strain gage-based telemetry system and a piezoelectric shaker that rotates with the rotor. The finite element model of the beam is derived based on the Timoshenko beam theory. The effects of varying rotating speeds and stagger angles on the blade natural frequencies are studied. The results indicate that the natural frequencies calculated from the finite element model and the experimental values are in good agreement. It is found that the blade natural frequencies increase with the rotating speed in a nonlinear linear way. The effects of the stagger angle on the measured natural frequencies are not clear.

1994 ◽  
Vol 116 (3) ◽  
pp. 672-677 ◽  
Author(s):  
Y. C. Fan ◽  
M. S. Ju ◽  
Y. G. Tsuei

The vibration of a rotating blade is investigated in this work. A rotor system is built and natural frequencies of the rotating blade are measured and compared with the numerical results from a finite element analysis. The experimental setup has a strain-gage-based telemetry system and a piezoelectric shaker that rotates with the rotor. The finite element model of the beam is derived based on the Timoshenko beam theory. The effects of varying rotating speeds and stagger angles on the blade natural frequencies are studied. The results indicate that the natural frequencies calculated from the finite element model and the experimental values are in good agreement. It is found that the blade natural frequencies increase with the rotating speed in a nonlinear way. The effects of the stagger angle on the measured natural frequencies are not clear.


2010 ◽  
Vol 102-104 ◽  
pp. 17-21
Author(s):  
Bin Zhao

In order to study the static and dynamical characteristics of the crankshaft, ANSYS software was used to carry out the corresponding calculations. The entity model of the crankshaft was established by UG software firstly, and then was imported into ANSYS software for meshing, and then the finite element model of the crankshaft was constructed. The crankshaft satisfied the requirement of stiffness and strength through static analysis. The top six natural frequencies and corresponding shapes were acquired through modal analysis, and the every order critical rotating speed of the crankshaft was calculated. The fatigue life of the crank was calculated by fatigue module of ANSYS software finally. These results offered the theoretical guidance for designing, manufacturing and repairing the crankshaft.


Author(s):  
J. Poirier ◽  
P. Radziszewski

The natural frequencies of circular saws limit the operating speeds of the saws. Current industry methods of increasing natural frequency include pretensioning, where plastic deformation is induced into the saw. To better model the saw, the finite element model is compared to current software for steel saws; C-SAW, a software program that calculates frequencies for stiffened circular saws. Using C-SAW and the finite element method the results are compared and the finite element method is validated for steel saws.


2014 ◽  
Vol 945-949 ◽  
pp. 1143-1149
Author(s):  
Hai Xia Sun ◽  
Hua Kai Wei ◽  
Xiao Fang Zhao ◽  
Jia Rui Qi

The finite element model of the concrete mixing truck’s frame is builded by using shell as basic element, and the process of building the finite element model of the balance suspension is introduced in detail. Based on this, frame’s stress on five types of typical operating conditions are calculated by using the finite element analysis software, NASTRAN, and results can show the dangerous position and the maximum stress position on the frame. The analysis result on structural strength can provide the basis for further improving the frame structure.


Author(s):  
Budy Notohardjono ◽  
Shawn Canfield ◽  
Suraush Khambati ◽  
Richard Ecker

Shorter development design schedules and increasingly dense product designs create difficult challenges in predicting structural performance of a mainframe computer’s structure. To meet certain certification benchmarks such as the Telcordia Technologies Generic Requirements GR-63-CORE seismic zone 4 test profile, a physical test is conducted. This test will occur at an external location at the end of design cycle on a fully functional and loaded mainframe system. The ability to accurately predict the structural performance of a mainframe computer early in the design cycle is critical in shortening its development time. This paper discusses an improved method to verify the finite element analysis results predicting the performance of the mainframe computer’s structure long before the physical test is conducted. Sine sweep and random vibration tests were conducted on the frame structure but due to a limitation of the in-house test capability, only a lightly loaded structure can be tested. Evaluating a structure’s modal stiffness is key to achieving good correlation between a finite element (FE) model and the physical system. This is typically achieved by running an implicit modal analysis in a finite element solver and comparing it to the peak frequencies obtained during physical testing using a sine sweep input. However, a linear, implicit analysis has its limitations. Namely, the inability to assess the internal, nonlinear contact between parts. Thus, a linear implicit analysis may be a good approximation for a single body but not accurate when examining an assembly of bodies where the interaction (nonlinear contact) between the bodies is of significance. In the case of a nonlinear assembly of bodies, one cannot effectively correlate between the test and a linear, implicit finite element model. This paper explores a nonlinear, explicit analysis method of evaluating a structure’s modal stiffness by subjecting the finite element model to a vibration waveform and thereafter post processing its resultant acceleration using Fast Fourier Transformation (FFT) to derive the peak frequencies. This result, which takes into account the nonlinear internal contact between the various parts of the assembly, is in line with the way physical test values are obtained. This is an improved method of verification for comparing sine sweep test data and finite element analysis results. The final verification of the finite element model will be a successful physical seismic test. The tests involve extensive sequential, uniaxial earthquake testing in both raised floor and non-raised floor environments in all three directions. Time domain acceleration at the top of the frame structure will be recorded and compared to the finite element model. Matching the frequency content of these accelerations will be proof of the accuracy of the finite element model. Comparative analysis of the physical test and the modeling results will be used to refine the mainframe’s structural elements for improved dynamic response in the final physical certification test.


Author(s):  
Youngin Choi ◽  
Seungho Lim ◽  
Kyoung-Su Park ◽  
No-Cheol Park ◽  
Young-Pil Park ◽  
...  

The System-integrated Modular Advanced ReacTor (SMART) developed by KAERI includes components like a core, steam generators, coolant pumps, and a pressurizer inside the reactor vessel. Though the integrated structure improves the safety of the reactor, it can be excited by an earthquake and pump pulsations. It is important to identify dynamic characteristics of the reactor internals considering fluid-structure interaction caused by inner coolant for preventing damage from the excitations. Thus, the finite element model is constructed to identify dynamic characteristics and natural frequencies and mode shapes are extracted from this finite element model.


Author(s):  
Matthew Daly ◽  
Armaghan Salehian ◽  
Alireza Doosthoseini

The following paper presents the results of a thermal robustness assessment of a rigidized space inflatable boom. Modal testing is performed at three different environmental temperatures; spanning a range of 38°C, with the purpose of characterizing dynamic behavior and assessing changes in bending frequencies. Experimental results show that the natural frequencies of the boom shift only marginally within the tested bandwidth. A finite element model is developed in parallel with experiments to determine compatibility with beam theory. The resulting simulation shows that linear beam theory can be used to predict bending frequencies and frequency response function magnitudes with very good accuracy.


2011 ◽  
Vol 201-203 ◽  
pp. 253-256 ◽  
Author(s):  
Zhi Peng Lv ◽  
Si Zhu Zhou ◽  
Xiu Hua Ma

According to the plunger pump movement principle, this paper analyzed the two kind of typical force situation of the crosshead, and obtained the theoretical maximum force. Established the finite element model of the crosshead, gave an analysis to the load handling and boundary condition. The last results of the node stress and displacement show that the crosshead can work safely.


2013 ◽  
Vol 694-697 ◽  
pp. 194-197
Author(s):  
Li Juan Yu ◽  
Chang Ju Xu ◽  
Xue Cheng Zhang

In the test enginery, using reverse frame put the pulling force into the pressure is the most commonly structure method. This paper analyzed the buckling problem of the process of reverse frame working, established the finite element model , stability analyzed , putted forward and proved the critical condition of reverse frame in the course of stability, Verified in 10kN deadweight force standard machine.


2011 ◽  
Vol 199-200 ◽  
pp. 1126-1129
Author(s):  
Su Fang Fu ◽  
Han Gao ◽  
Jia Xi Du ◽  
Qiu Ju Zhang ◽  
Xue Ming Zhang ◽  
...  

In this paper, the finite element model for the cabinet of a drum washing machine and the model for testing vibration of the cabinet were developed in ANSYS software and PULSE™, respectively. A series of tests were conducted. The natural frequencies and mode shapes were obtained by finite element analysis and modal experiment, which revealed weak parts of the cabinet. Meanwhile, the computational modes were in good agreement with experimental ones and this could provide an available method by which it was convenient to improve the design of the cabinet.


Sign in / Sign up

Export Citation Format

Share Document